クリープの影響を考慮した飽和粘性土の圧密機構に関する研究

Effect of Creep on the Consolidation Properties of Clay

白 宗和	Jonghwa BAEK	(山口大学大学院)
石藏良平	Ryouhei ISHIKURA	(山口大学大学院)
山田和昌	Kazumasa YAMADA	(山口大学大学院)
松田 博	Hiroshi MATSUDA	(山口大学大学院)

平野部の軟弱地盤地帯や埋立地において構造物を建設する際,残留沈下や不等沈下などに対する正確な沈下 予測や適切な沈下抑制対策を行うことは重要である.粘土地盤の沈下予測を行うにあたって,室内試験結果を 現場へ適用する際の相似則を的確に設定することが必要となるが,その際に重要となる一次圧密中に生じるク リープの影響は未だに明確ではない.そこで本報告では,一次圧密中に生じるクリープの影響を評価すること を目的に,層別計測型圧密試験装置 (STC)を用いて,非排水時に生じる過剰間隙水圧とクリープの関係につ いて調べた.また,段階載荷圧密試験から得られた載荷圧力と二次圧密係数との関係を,Yinらにより導かれ た EVP(弾粘塑性)モデルに適用し,実験結果との比較から,一次圧密中のクリープの影響について検討を行 った.

キーワード: 圧密, クリープ沈下, 応力緩和

1. はじめに

平野部の軟弱地盤地帯や埋立地において構造物を建設 する際,残留沈下や不等沈下などに対する正確な沈下予 測や適切な沈下抑制対策を行うことは重要な技術課題で ある.粘土地盤の沈下予測を行うにあたって,室内試験 結果を現場へ適用する際の相似則を的確に設定すること が重要となる.その際一次圧密中に生じるクリープの影 響を把握する必要があり,Mesri らをはじめ,これまで 多くの研究が行われている^{1)~5)}.しかしながら,一次圧 密中のクリープ沈下を正確に分離することは未だ容易で はない.

著者らはこれまで,層別計測型圧密試験装置(Separate Type Consolidometer,以下 STC)を用いて,事前圧密を受けた粘土の二次圧密特性や,一次圧密中のクリープの影響について一連の検討を行っている^{6)~12)}.

吉國らは、一次元圧密における代表的な時間依存挙動 であるクリープを弾粘性液体の挙動として捉える場合、 一次圧密終了後非排水として生じる過剰間隙水圧とクリ ープの間には一定関係があることを予測している^{13),14)}.

また Yin らは、一次元圧縮条件での層厚の異なる粘土 において、沈下量と過剰間隙水圧を計算するため、等価 時間の考え方と一定クリープパラメータを用いて、粘弾 塑性モデル(EVP)を組入れた非線形の圧密方程式を導 き、実験結果との比較を行っている^{15)~18)}.

本報告では、一次圧密中に生じるクリープの影響を評価することを最終目的に、STCを用いて、有効応力緩和 とクリープとの関係について調べた.次に、段階載荷圧 密試験から得られた載荷圧力と二次圧密係数との関係を、 Yin と Graham により導かれた EVP(弾粘塑性)モデル¹⁶⁾ に適用した計算結果と STC による実験結果とを比較す ることにより、一次圧密中のクリープの影響について検 討を行った.

(IGC:D5)

2. 層別計測型圧密試験装置の概要

2.1 試料の物理的特性

本研究で用いた試料は,東京湾で採取した撹乱粘土(以下,東京湾粘土と称する)である. 表-1 に試料の物理特性,図-1 に段階載荷圧密試験によって得られた e - log p 関係を示す.

2.2 層別計測型圧密試験機の概要

本試験で用いた層別計測型圧密試験装置(STC)は、従 来から用いられている装置をもとに、山口大学土質研究

表-1 使用した試料の物理および力学特性

土粒子密度	塑性限界	液性限界
$\rho_s (g/cm^3)$	WP(%)	w _L (%)
2.78	41.6	66.6
塑性指数	圧縮指数	膨潤指数
I_P	C _C	Cr
25	0.46	0.04

図-2 層別計測型圧密試験装置

図-3 応力経路の概念図

Туре	σ₀ (kPa)	Δσ (kPa)	σ _f (kPa)	Stress relaxation (min)	Н ₀ (ст)	е
A02-1				0		1.260
A02-2				60		1.273
A02-3	78.4	0	78.4	300		1.211
A02-4				600		1.272
A02-5				1000	2	1.310
B02-1				0	2	1.067
B02-2				60		0.994
B02-3	157	0	157	300		1.043
B02-4				600		1.004
B02-5				1000		0.989
0.8D	39.2	39.2	78.4	0		-
0.8DUD	78.4	0	78.4	10000		1.126
1.6D	78.4	78.4	157	0	10	_
1.6UD	78.4	78.4	157	10000		1.157
1.6DUD	157	0	157	10000		1.087

表-2 層別計測型圧密試験装置(STC)の実験条件

室で新たに装置に改良を加えて製作したものである^{0,7)}. STC は、粘土層をいくつかの層に分割し、各層の応力条件や排水条件が分割しない場合と同一になるように各層を連結し圧密する装置である.試験機の概要を図-2 に示す.特徴として主に以下の3つが挙げられる.

- 1) 分割した各層ごとの沈下量を正確に測定できる.
- 2) 各分割層間の間隙水圧を容易に測定できる.
- 3) 全体として、比較的大きな層厚になるが、各層

ごとの載荷を行っているため周面摩擦による載 荷応力の減少が小さい.

各分割供試体の寸法は,直径 60mm,厚さ 20mm であ り,分割供試体ごとに圧密を行うことができる.更に, この分割供試体を5個直列に連結することによって,各 分割供試体の間隙水は連続し,全体としては1つの粘土 層とみなすことができる.したがって,層厚が 20mm から 100mm までの片面排水条件での圧密試験を行うこと ができる.

載荷には空気圧を用い、レギュレーターによって応力 制御の条件で試験を行った.空気圧による載荷重は載荷 板、ガイドリング、圧密リングおよび底板をゴムメンブ レンで覆うことによって、空気圧が上部ペデスタルに加 わるようになっている.分割供試体を連結した圧密試験 では、各分割供試体の沈下量および分割供試体間の過剰 間隙水圧を測定することで、供試体内部のひずみと間隙 水圧の変化を測定することができる.実験中は、温度変 化が圧密特性に及ぼす影響を避けるため、室温を20℃に 保ち、すべての圧密容器を恒温水槽(幅 280mm、高さ 1000mm、深さ 180mm)に入れ、15±0.5℃に保った.な お、圧密中はバックプレッシャーとして 98kPa を負荷し た.また、各試験において、試験直前の供試体内の B 値 が 0.95 以上であることを確認している.

3. 有効応力緩和とクリープひずみの関係

3.1 載荷方法および実験条件

実験パターンを示すための応力経路の概念図と実験条件を図-3 および表-2 に示す.表-2 には、応力緩和直前の各供試体の間隙比を併記している.表-2 に示す TypeA02-1~5 および TypeB02-1~5 では、沈下量と間隙水圧の測定を行った.なお、間隙水圧 u がゼロ(Δσの 99%)になった時点を EOP (End of Primary Consolidation) とした.その後、分割供試体ごとに排水バルブを閉じて、 所定の時間まで応力緩和させ、その後、再び排水バルブ を開き、応力緩和の時間と同一時間、排水を許した.

Type 0.8D および 1.6D では, 片面排水条件(2cm)で各供 試体に初期圧密応力 σ_0 を負荷し, EOP まで予圧密後, 5 層を直列に連結することによって層厚を 10cm とした. その後, 片面排水条件で圧密応力 σ_f で圧密を行った.

Type 0.8DUD および 1.6DUD では,片面排水条件(2cm) で各供試体に初期圧密応力 σ_0 を負荷し,EOP まで予圧 密後,層全体が非排水条件となるように5層を直列に連 結した後,所定の時間まで応力緩和させた.その後,再 び排水バルブを開き,片面排水条件(10cm)で応力緩和と 同一時間排水を許した.

Type 1.6UD では、片面排水条件(2cm)で各供試体に初 期圧密応力 σ_0 を負荷し、EOP まで予圧密後、5 層を直列 に連結することによって層厚を 10cm にした後、非排水 条件で最終圧密応力 σ_f の状態で所定の時間応力緩和さ せた. その後、片面排水条件で排水を許した.

3.2 実験結果と考察

応力緩和時に発生する間隙水圧uを初期圧密応力 σ_0 で除した値を有効応力減少比 u/σ_0 と定義する. Type A, B および Type 1.6UD における有効応力減少比 u/σ_0 と応 力緩和時間との関係を図-4 に示す. なお, Type 1.6UD で は、 $\Delta \sigma$ を負荷することから、 $u/\sigma_0 - 1$ を有効応力減少 比と定義した. 図に示されるように、実験条件に依らず、

図-5 有効応力と沈下ひずみの関係 (Type A)

図-6 有効応力と沈下ひずみの関係 (Type B)

時間の経過とともに u/σ_0 がほぼ同じ傾向で上昇することが確認された.

TypeA および TypeB において,実験により得られた有 効応力緩和とクリープひずみの関係を,図-3 に示した応 力経路で整理したものが図-5,6 である. Type A02-1 お よび Type B02-1 において,EOP 後所定時間(60,300, 600,1000min)経過した際のクリープひずみ(Drain)を● 印として示した.一方,Type A02-2~5 および Type B02-2 ~5 において所定時間(60,300,600,1000min)応力緩 和させた際の有効応力とその後,同一時間,再び排水を

図-7 有効応力と沈下ひずみの関係

図-8 沈下ひずみの経時変化

図-9 応力緩和後の沈下ひずみの経時変化

許した時の沈下ひずみ(Undrain)を○印として示した. 同図には吉國らが提案する同一時間に生じる応力緩和 とクリープひずみの関係を示す等クリープ速度線^{13),14)} を本研究で行った 1000(min)の実験結果をもとに併記し ている.

図-5, 6 においては、同一時間に生じる応力緩和とク リープひずみの関係は、 ε_v -logy 上で平行になると仮定 した等クリープ速度と若干異なる傾向がみられた.

図-7に各実験条件で得られた有効応力減少比 u/σ_0 と クリープひずみの関係を示した.図中の \oplus , \blacksquare は,

図-10 応力緩和後の過剰間隙水圧の消散

図-11 ひずみ速度の経時変化

Туре	σ₀	$\Delta \sigma$	σ _f	Δ σ/σ.
	(kPa)	(kPa)	(kPa)	1 0/00
A2-1		19.6	98	0.25
A2-1	78.4	39.2	117.6	0.5
A2-1		58.8	137.2	0.75
A2-1		78.4	156.8	1
B2-1		39.2	196	0.25
B2-1	157	78.4	235.2	0.5
B2-1		117.6	274.4	0.75
B2-1		156.8	313.6	1

表-3 段階載荷圧密試験の実験条件

表-4 EVP モデルに使用するパラメータ

λ	к	ψ_{0}	A
0.04	0.132	0.0035	0.001
t_0 (min)	H_0 (mm)	k (m/s)	V=1+e
200	89.5	6.50E-08	2.15

TypeA02-2~5 および TypeB02-2~5 において非排水時に 発生する間隙水圧と TypeA02-1 および TypeB02-1 におい て EOP 後のクリープとの関係を示したものである. 実験 条件に依らず,両者の間には線形関係がみられる.

図-8は, 層厚 10cm の供試体について平均ひずみと経 過時間の関係を示したものである. Type 0.8D および Type 0.8DUD を比較すると,排水条件が異なるため,沈下ひ ずみ速度にも違いが見られるが,一次圧密時に生じる沈 下ひずみは同程度となっている.

図-9 は、層厚 10cm の供試体について最終段階の排水 時の沈下ひずみ一時間関係を示したものである. 0.8DUD および Type 1.6DUD において応力緩和後に再び排水によ って生じる沈下ひずみは、初期圧密応力 σ_0 の大きさに関 係なくほぼ同程度の値を示している.また Type 1.6D お よび Type 1.6UD を比較すると、Type 1.6UD の沈下ひず みが若干大きくなる傾向がみられた.

Type 1.6DUD および Type 1.6UD において応力緩和後に 排水させたときの各層の間隙水圧と時間の関係を図-10 に示す. 図中において,試験番号の末尾の数字は分割層 の番号を示し,1 は排水層,5 は非排水層を示す. Type 1.6DUD は有効応力減少比 u/σ_0 が 0.3 まで,また Type 1.6UD は 1.2 まで上昇し,その後時間経過とともに消散し ている.

Type 1.6UDと Type 1.6DUDにおいて応力緩和後に生じ る各分割供試体のひずみ速度の経時変化を示したものが 図-11 である. 図中の直線は,二次圧密係数を式(1)で定 義したとき,式(2)で得られるひずみ速度である.

$$\varepsilon_{\alpha} = \frac{d\varepsilon}{d\log t} \tag{1}$$

$$\log(\varepsilon) = \log(0.434\varepsilon_{\alpha}) - \log t \qquad (2)$$

図中には、各分割層ごとの結果を示しており、各ケースともに載荷直後から排水層に近い程ひずみ速度が大きくなる傾向を示している.特に、圧密初期から、1.6UDは大きいひずみ速度を示し、EOPに近づくにつれて、両者ともに式(2)に示される直線に収束する傾向がみられる.

4. 弾粘塑性(EVP)モデルによる試験結果の検証

4.1 Yin らの EVP モデルの概要

圧密問題における飽和粘性土の応力-ひずみ-時間関係について Yin と Graham らは、多段階一定鉛直荷重条件下における、粘土層の沈下量および過剰間隙水圧と時間の関係を求めるため次式に示す弾粘塑性構成モデル(EVP モデル)¹⁷⁾をみいだした。

$$c_{v} \frac{\partial^{2} u}{\partial z^{2}} = \frac{\partial u}{\partial t} = \frac{1}{m_{v}} g(u, \varepsilon_{z})$$
(3)

$$\frac{\partial \varepsilon_z}{\partial t} = m_v \frac{\partial u}{\partial t} + g(u, \varepsilon_z)$$
(4)

$$g(u,\varepsilon_z) = \frac{\psi/V}{t_0} \left\{ \exp\left(-\varepsilon_z \frac{V}{\psi}\right) \right\} \left(\frac{\sigma_z - u}{\sigma'_{z_0}}\right)^{\frac{\lambda}{\psi}}$$
(5)

ここで、 $g(u, e_2)$ は EVP モデルにおけるクリープ関数 である. m_v は体積圧縮係数、V(=1+e)は体積比である、 ψ はクリープパラメータで、間隙比と時間 (e-lnt) 関係に おける二次圧密領域の接線勾配を意味し、二次圧密係数 e_a との間に $e_a = 2.3\psi/(1+e)$ の関係が成り立つ. t_o は一次 圧密終了時間(EOP)に関連したパラメータ、 c_v は圧密係 数である.

このモデルでは, 沈下ひずみを規定する 3 つのパラメ ータλ, κ, ψ が用いられクリープパラメータψ を用い

図-12 クリープパラメータと載荷応力増加比の関係

図-13 クリープパラメータと有効応力の関係

ることによって、一定時間経過後のクリープひずみを求 めることができる.

4. 2 クリープパラメータ *ψ* の設定

ここでは、Yin らの EVP モデルにおいて, クリープパ ラメータ ψ の有効応力依存性について検証した. 試料は 3. で使用した東京湾粘土を用い段階載荷圧密試験を行っ た. 圧密圧力は σ_0 /4=19.6(kPa), σ_0 /2=39.2(kPa), σ_0 =78.4(kPa)とした. その後, **表**-3 に示す最終載荷応 力 $\Delta \sigma$ を負荷し, クリープパラメータ ψ を算出した. な お, σ_0 =157(kPa)の条件でも同様の実験を行った.

試験により得られたクリープパラメータ $\psi \ge \Delta \sigma / \sigma_0$ の関係を図-12に示す. ψ は載荷応力増加比が大きくなるにつれて増加傾向がみられる.

次に、クリープパラメータ ψ と供試体に作用する有効 応力 σ 'の関係を示したものが $\mathbf{20}-13$ である.なお有効応 力 σ 'は、供試体に載荷した最終圧密圧力 σ_f を意味する. 今回行った試験条件では、クリープパラメータ ψ は有効 応力 σ 'の増加とともに増加する傾向を示した.そこでこ こでは、両者の関係を線形関係と仮定して、以下の式で 近似を行った.

$$\psi = \psi_0 + A \sigma' \tag{6}$$

4.3 実験結果と計算結果との比較

クリープパラメータψの有効応力依存性において式 (6)を用い, EVP モデルでの計算結果と実験結果との比較

図-14 平均ひずみの実験結果と計算結果との比較

図-15 ひずみ速度の実験結果と計算結果との比較

を行った.ここでは、Type 1.6Dの実験結果との比較を行う. 表-4に使用した各パラメータの値を示す.

図-14は沈下ひずみと時間の関係に関して実験結果と 計算結果との比較を行ったものである.同図は式(6)にお いて A=0.001 として得た結果も併記している. A 値が大 きくなるにつれて沈下ひずみは増加する傾向を示す.ま た,図-15 はひずみ速度と時間である.

図中には分割層ごとの結果を示しており,実験結果お よび計算結果ともに図-11 と同様,排水層に近いほど, 一次圧密初期からひずみ速度が大きくなる傾向を示した. また二次圧密領域では,両者ともに式(2)の直線に収束す る傾向が示された.

図-11と図-15 一次圧密領域においては,クリープパ ラメータψの有効応力依存性を考慮した計算結果の方 がより実験結果に近い傾向が示すことが分かる.このこ とから式(6)を考慮することで供試体内の有効応力変化 に伴う一次圧密中のクリープひずみの影響をより正確に 評価できるものと考えらえる.

5. まとめ

本報告では、一次圧密中に生じるクリープの影響を評価することを最終目的に、STCを用いて、有効応力緩和 とクリープとの関係について調べた.また、段階載荷圧 密試験から得られた載荷応力と二次圧密係数との関係を、 Yin と Graham により導かれた EVP(弾粘塑性)モデルに 適用した計算結果と実験結果とを比較することにより、 一次圧密中のクリープの影響について検討を行った.得 られた主な結論を以下に示す.

- 応力緩和時の有効応力減少比 u/σ₀は、初期圧密応 力 σ₀に依らず、時間の経過と伴に増加することが 確認された.また、有効応力緩和と沈下ひずみの関 係は比較的線形的な関係があることが示された.
- 2) 圧密中のひずみ速度は、二次圧密領域に近づくにつれて、二次圧密係数から求めたひずみ速度の線に 漸近する傾向を示す。
- 有効応力とクリープパラメータの線形関係を仮定 することにより、実験結果をよく表現できた.

参考文献

- Bjerrum, L.: Engineering geology of Norwegian normally consolidated marine clays as related to the settlements of buildings, Geotechnique, 17(2), pp.83-118, 1967.
- Ladd, C. C., Foott, R., Ishihara, K., Schosser, F. and Poulos, H. j. : Stress-deformation and strength characteristics, Proceedings of 9th ICSMGE, Tokyo 2, State of the art report, pp.421-494, 1977.
- Garlanger, J. E.: The consolidation of soils exhibiting creep under constant effective stress, Geotechnique, 22(1), pp.71-78, 1972.
- 4) Mesri,G. : Coefficient of secondary compression, Journal of the Soil mechanics and foundations division, Vol.99,pp.123-137,1973.
- Mesri, G. and Choi,Y-K.: The uniqueness of the end of primary (EOP) void ratio-effective stress-relationship, Proceedings of 12th ICSMGE, San Francisco, 2, pp.587-590,1985.
- Aboshi, H., Matsuda, H. and Okuda, M. : Pre-consolidation by separate-type consolidometer, Proc.,11th ICSGFE, 3, pp.577-580, 1981.
- 網干寿夫,松田博:層別計測による事前圧密工法の基礎的研究,土木学会論文報告集,No.340, pp.139-144, 1983.
- 8) 松田博, 白元珍, 白宗和: 一次圧密中の粘土のクリー

プに関する一考察,第 58 回土木学会中国支 部,pp.189-190, 2006.

- 9) Matsuda, H., Baek, W. and Baek, J.: Effect of creep of the settlement-time relation during primary consolidation of clay, Proceedings of the International Workshop on Constitutive Modeling - Development, Implementation, Evaluation and Application, Hong Kong, pp. 208-217, 2007.
- 白宗和,松田博,白元珍,佐藤恭彰:一次圧密中の クリープが粘土の沈下-時間関係に及ぼす影響,第42回 地盤工学研究発表会, pp.269-270, 2007.
- 白宗和,松田博: 粘土の一次圧密中のクリープ沈下 に与える先行圧密圧力の影響,第 43 回地盤工学研究 発表会, pp.851-852, 2008.
- 山田和昌,白宗和,松田博,石蔵良平: クリープの 影響を考考慮した飽和粘性土の圧密機構に関する研 究,第44回地盤工学研究発表会,pp.871-872,2009.
- 13) 吉國洋,西海尚,池上慎司,瀬戸一法:一次元圧密 におけるクリープと有効応力緩和,第 29 回土質工学 研究発表会講演集, pp.269-270,1994.
- 14) 吉國洋: 軟弱粘土の圧密曲線と圧縮曲線に対する一つの解釈,第 30 回土質工学研究発表会講演集, pp.425-428, 1995.
- 15) Yin, J-H and Graham, J. : Equivalent times and one-dimensional elastic viscoplastic modeling of time-dependent stress-strain behavior of clays. Can.Geotrch.J.31, pp.42-52, 1994.
- 16) Yin, J-H. and Graham, J. : Elastic viscoplastic modeling of one-dimensional consolidation, Geotechnique, 46(3), pp.515-527, 1996.
- 17) Yin, J-H. : Non-linear creep of soils in oedometer tests, Geotechnique, J.49(5), pp.699-706, 1999.
- 18) Yin, J-H., Zhu, J-G. and Graham, J. : A new elastic viscoplastic model for time-dependent behavior of normally and overconsolidated clays, theory and verification, Can. Geotech, J.39, pp.157-173, 2000.

(2009年6月29日 受付)