杭の先端支持機構における地盤内影響領域の実験的評価

Experimental Evaluation of Influence Zone for End Bearing Capacity of Piles

鈴木大夢	Hiromu SUZUKI	(広島大学大学院工学研究科)
一井康二	Koji ICHII	(関西大学社会安全学部)

矢板式岸壁の控え杭などでは、杭の先端が支持層に達していない場合があり、有限要素解析にお ける先端支持力のモデル化が難しい.そこで、載荷荷重によって変形する杭の先端付近の地盤領域 (影響領域)を考慮したモデル化手法が提案されたが、このモデル化では影響領域の範囲を正しく把 握する必要がある.本研究では、異なる土質条件に対して、実際の影響領域の範囲を模型実験によっ て実験的に検討し、既往の解析的検討結果と比較した.実験結果では、相対密度や内部摩擦角を変化 させても影響領域の変化はほとんどなく、解析とは異なる結果を示した.

キーワード:相対密度、内部摩擦角、影響領域

(IGC : E04)

1. はじめに

杭基礎は、主に地表面から軟弱な地盤が厚く堆積して おり、地盤に構造物を直接支持させることが困難な場合 に採用される.また、直接支持が必要な構造物以外にも係 留施設である矢板式岸壁などの控え杭としても用いられ ている.ここで、控え杭には通常大きな鉛直荷重が作用す ることがない.そのため杭の先端が支持層に達していな い場合が多い.近年、これらの杭に対しても適切に先端支 持力をモデル化することの必要性が指摘され、有限要素 解析による支持力の検討が提案されている.

杭の先端支持機構については、これまでに様々なアプ ローチから研究がなされている.脇田 りは、杭の荷重と沈 下量の関係は双曲線近似との適合性が高いことを報告し ている.Hirayama²⁾は、砂地盤中の場所打ち杭の周面摩擦 力や先端支持力の荷重変位関係を双曲線で近似すること を提案している.安福ら³⁾は、種々の砂が持つ圧縮性の違 いに着目した先端支持力の発現特性を検討している.桑 島ら⁴⁾は、破砕性土地盤においては杭先端付近の地盤に密 度の高い領域が形成されることを確認している.大谷ら⁵⁾ は、産業用X線CTスキャナを用いて鉛直荷重作用時の杭 先端地盤の支持力メカニズムを3次元的に評価している.

上記の杭の先端支持機構基づき現在までに有限要素解 析法における様々な先端支持力の 2 次元解析モデルが提 案されている.しかしながら,これらの解析モデルにはそ れぞれ問題点がある^の.これまでの提案モデルをまとめる と**図-1**のようになる.モデル①は,杭をばねを介して地 面に接続しており,地盤への影響が考慮されていない.モ デル②は,杭先端の接点と地盤の接点を直接接続したモ デルであるが,解析結果が地盤要素のメッシュサイズに 依存し不安定となる.モデル③は,モデル②に先端支持力 として非線形ばね要素を加えたモデルであり,先端支持 力を表現する非線形ばね要素と地盤要素が直接つながっ た構造となる.この時,載荷荷重による非線形ばね要素の 変形に加えて,非線形ばね要素によって伝えられた応力 による地盤要素に変形が生じ,杭の沈下量を変形量のダ ブルカウントによって過大評価してしまう恐れがある.

これらの問題点を踏まえて新たに載荷荷重によって変 形する杭の先端付近の地盤領域を影響領域と定義し,影 響領域の境界面に非線形ばねの地盤側接点と複数の従属 点を設置した多点拘束によって地盤変形量のダブルカウ ントを最小限にする手法が提案されている.しかし,この 手法では影響領域の適切な評価が不可欠である.

図-1 既往の解析モデル

影響領域に関しては、Yang⁷によって空洞拡張理論を用いた解析的研究がなされており、影響領域の鉛直方向の 範囲(杭先端から影響領域の最下端までの長さ)*IFD*は、以下の式(1)で示されている.

$$\frac{I_{FD}}{D} = \frac{1}{2} \left(\tan \phi' + \sqrt[3]{\frac{G}{G\Delta + P_0' \tan \phi'}} \frac{1}{\cos \phi'} \right) \quad (1)$$

ここで,Dは杭径, ϕ 'は内部摩擦角,Gは剛性率, Δ は体積 ひずみ, P_0 'は拘束圧である.また,体積ひずみは式(2)によ って決定される.

$$\Delta = 50 \left(\frac{G}{P_0 \tan \phi} \right)^{-1.8}$$
(2)

したがって,影響領域の鉛直範囲は拘束圧,内部摩擦角や 剛性率といった土質特性,相対密度によって変化すると いえる.ただし,本研究では,この影響領域は塑性領域お よび弾性領域の変形が生じる部分も含んでいる.そのた め,Yangによる影響領域と全く同じではない.

Yang の研究は解析的な検討のみであり,実現象との対応 は確認されていない.本研究では模型杭の貫入載荷試験を 行い,実験的に影響領域を評価して,Yangの解析で示され た各種の影響因子が実際に影響領域の範囲に影響を及ぼ すかどうかを明らかにする.

2. 実験概要と土質条件

2.1 実験の概要

模型地盤を木製土槽内に締固めによって作成した. 模型地盤内にアルミ製の模型杭を 46.5cm の初期根入れ深さ で設置した. 杭と地盤間にグリス等の摩擦低減の工夫は 行っていない. 図-2 に示す載荷試験装置を用いて載荷試 験を行い, 模型杭を供試体内に貫入させた. この載荷試験 装置では, 荷重制御による載荷が可能で, 載荷対象物に図 中の円形載荷板を用いて載荷を行う. 載荷板の自重は 0.175kN である. また, 載荷板上部におもりを載せること で追加の荷重を与えることができる.

模型地盤は鉛直断面が1辺24.5cmの正方形で,高さは

	Case番号	土粒子密度	拘束圧	初期剛性率	内部摩擦角	相対密度	間隙比	使用土槽
	Case1		0.89KPa	11.2MPa	27.0° -	50%	1.12	(a)
まさ土	Case2	2.646g/cm ³	1.01KPa	13.6MPa	37.0 ∼ 43.0°	70%	1.02	(a)
	Case3		0.89KPa	11.2MPa		50%	1.12	(b)
山砂	Case4	$2.696 g/cm^3$	0.93KPa	11.4MPa	32.2°	50%	0.89	(a)

表-1 載荷試験ケースおよび土試料の物理的性質

図-2 載荷試験装置および載荷試験の概要

図-4 通常土槽(土槽(a))

図-3 各土試料の粒径加積曲線

図-5 アクリル板付土槽(土槽(b))

25.0cm である. また, 模型杭は直径が 2.5cm で, 長さが 20cm である. 地盤変形を可視化するため, カラーサンド を模型地盤底面から約 3cm, 4.5cm, 6cm の高さ, 更に 6cm より高い所は 1.25cm の間隔で模型地盤底面から 16cm の 高さまで薄く敷き詰める. 地盤の変形はカラーサンド層 の変形から考察した. カラーサンドは, 粒径が 0.2mm, 0.5mm, 1mm のものをそれぞれ等重量で混ぜ合わせたもの を使用した.

載荷時には模型杭の貫入量を測定し,模型杭を初期根入れ深さである供試体表面から 6.5cm の位置からさらに 10.5cm 下まで貫入させた.載荷途中で沈下が終了した場合は,十分な時間をおいて沈下が終了していることを確認した後,載荷板上部に追加の荷重を設置し,模型杭をさらに貫入させる作業を繰り返した.そして,模型杭が 10.5cm 貫入した時点で載荷試験を終了とした.なお,貫入量を 10.5cm にしたのは,地盤を大きく変形させることで杭貫入による杭先端部の地盤変形を明確に観察するためである.載荷終了後は,土槽をそのまま(杭を貫入した 状態で)大型冷凍庫に約24時間保管し、凍結処理した.凍 結終了後に土槽側面の木材を取り外し、ノコギリで凍結 地盤を切断した.これによって、載荷試験によって変形し た地盤試料の断面を観察することが可能である.なお、本 模型実験は非遠心場で行った.

2.2 載荷試験ケース

載荷試験ケースおよび土試料の物理的性質を表-1 に示 す.表中のまさ土の内部摩擦角はTsuchidaら⁸⁾による一面 せん断試験の結果から得た.初期剛性率は相対密度の増 大と共に大きくなるが、内部摩擦角の変化及び試料の違 いによる変化はほとんどない.したがって、拘束圧が全試 験ケースで同程度である本模型実験では剛性率の変化は 相対密度の変化とほぼ同義であるといえる.Yang⁷⁾による と,影響領域は土の拘束圧、内部摩擦角、相対密度の影響 を受ける.そこで、Case1 と Case2 を比較することで相対 密度による影響領域の変化、Case1 と Case4 を比較するこ とで内部摩擦角の違いによる影響領域の変化をそれぞれ

写真-1 貫入量 1.93cm 時の カラーサンド変形写真(Case3)

写真-2 貫入量 2.60cm 時の カラーサンド変形写真(Case3)

写真-3 貫入量 4.48cm 時の カラーサンド変形写真(Case3)

図-6 貫入量 1.93cm 時の影響領域 (Case3)

図-7 貫入量 2.60cm 時の影響領域 (Case3)

図-8 貫入量 4.48cm 時の影響領域 (Case3)

写真-4 貫入量 5.42cm 時の カラーサンド変形写真(Case3)

写真-5 貫入量 8.00cm 時の カラーサンド変形写真(Case3)

写真-6 貫入量 10.50cm 時の カラーサンド変形写真(Case3)

図-9 貫入量 5.42cm 時の影響領域 (Case3)

(Case3)

図-11 貫入量 10.50cm 時の影響領域 (Case3)

評価する. なお, Case1 の実験のみカラーサンド層の位置 が模型地盤底面から 3cm, 6cm, 11cm, 16cm の 4 箇所であ り. 他の Case と異なっている.

載荷試験に用いた土試料はまさ土および福岡県産山砂 である.各土試料の粒径加積曲線は図-3の通りである. 土槽は、図-4および図-5に示す2種類の木製土槽(a),(b) を用いた.土槽は厚さ1.2mmの合板を長さ30mmの木工 用半ねじで固定することで作成した.図-4に示した土槽 (a)を用いた Case1,2,4の実験では、模型杭を供試体中心部 に設置し、無変形箇所である土槽壁面の影響をほとんど 受けない地盤変形を観察した.一方、図-5に示す土槽(b) を用いた Case3の実験では、4つの土槽壁面のうち1つを ジグソーによって切り抜き、その部分に透過性の高い厚 さ0.5cmのアクリル板をはめ込んでいる.このため、模型 杭をアクリル板近傍に設置することで、模型杭貫入によ る地盤の変形メカニズムをリアルタイムで視覚すること が可能である.ただし、土槽(b)の場合は、アクリル板の境 界面の摩擦などが模型杭貫入時の杭周辺の地盤変形に対して影響を及ぼす可能性がある.なお,土槽(b)の実験では,冷凍および解体の工程は行わなかった.

相対密度は供試体作成時に締固めによって調整し,ま さ土の場合は 50%および 70%,山砂の場合は 50%とした. また,まさ土は相対密度 50%でアクリル板土槽(b)を用い た載荷試験も行い,地盤の変形過程を観察した.なお,非 遠心場での模型実験であり上載荷重もないため,非常に 小さな拘束圧となる.

3. 影響領域の実験的評価

3.1 杭貫入時の地盤の変形過程

写真1~6に Case3 におけるアクリル板面の様子を示す. 写真中の緑線は模型杭の先端位置である.また,図-6~11 は Case3 のアクリル土層について模型杭先端位置ごとの

カラーサンド線の変形を初期状態と比較する形で示した ものである. カラーサンド線(アクリル板面におけるカラ ーサンド層が為す線)に変形が生じている部分と変形が生 じていない部分の境界点の座標を読み取り、境界点を結 ぶことで、杭先端周辺の変形した地盤領域、つまり、影響 領域を図示している. 図中の実線で囲まれた領域が、図タ イトルに記した貫入量時の影響領域であり,破線で囲ま れた領域は、一つ前の図に示された影響領域と同じであ る. なお、ここで影響領域の定義は初期状態カラーサンド 線(赤線)から 1mm 以上の鉛直変位が見られる領域として いる. これらの図は、ペイントツールのピクセルの位置読 み取り機能を用いて写真-1~6を基にカラーサンド層位 置を図示したものである. ただし、土槽の内壁は図の枠線 の外側にある. 模型杭の先端深さは初期状態(模型杭貫入 量=0cm)で6.5cm、載荷試験終了時で17.00cmであり、模型 杭の最終貫入量は10.5cmとなる.

図-6~9を見ると、杭先端直下3cmくらいまでのカラー サンド線の変形は大きく1cm程度変形している.しかし ながら、杭先端から離れた領域でのカラーサンド線の変 形量は小さく、最終的には全く変形がみられなくなる(影 響領域外).したがって、影響領域内では、杭先端付近の地 盤の変形量が大きく、杭先端から離れるほど地盤の変形

3.2 地盤条件を変えた載荷試験の結果

Case1, Case2, Case4 を対象に地盤条件(相対密度, 内部摩 擦角)を変えた場合の杭先端直下部に形成される影響領域 を検討した. 写真-7 に各ケースにおける杭中心断面の状 態を示す. 写真中の赤色領域は模型杭貫入位置である. な お,照明の加減で同じまさ土であっても色合いが大きく 異なっている. これらの写真を基に図-6~11 と同様の方 法で影響領域を図示したものを図-12 に示す. アクリル板 のないこれらのケースでは載荷直前のカラーサンド線の 位置を確認できない. そこで, 土槽両端部付近のカラーサ ンド層位置の初期高さ(2.1 節参照)を設定し, そこからカ ラーサンド線に 1mm 以上の変形が見られる領域を影響領 域とした. ただし, 設定したカラーサンド線の初期高さと 観測されたカラーサンド線に 1mm 以上の差が生じている

(a)まさ±*Dr*=50%(Case1)

(b)まさ±*Dr*=70%(Case2)

写真-7 各ケースにおける杭中心断面写真

(c)山砂 Dr=50%(Case4)

1cm

(a)まさ± D_r =50%(Case1)

(b)まさ±*Dr*=70%(Case2)

図-12 杭下部領域に形成される影響領域

(c)山砂 Dr=50%(Case4)

場合でも、杭貫入による変形でないことが明らかな場合 は非影響領域とした.図中の青線が設定したカラーサン ド線の初期高さ、赤線が貫入試験後のカラーサンド線、黒 線で囲まれた部分が推定した影響領域である.なお、図-12(a)と(b),(c)では、カラーサンド層の数が異なるため、 (b),(c)と同様のカラーサンド層が(a)にもあった場合に 推定される影響領域を図-12(a)に限り破線で示した.

図-12(a) と(b) をみると,実線で示された範囲では両者 に見られる影響領域は同程度である.ただし,破線領域に 着目すると,(a)の方が(b)よりも少し大きいといえる.図 -12(a)は D,=50%のまさ土で,図-12(b)は D,=70%のまさ 土である.このことから,相対密度の変化によって影響領 域の大きさは変わらない.もしくは,相対密度の小さい地 盤の方が影響領域がやや大きくなるといえる.

図-12(a)と図-12(c)を深さ方向に着目してみると,実 線範囲では図-12(c)で見られる影響領域の方が大きいが, 破線範囲では同程度となっている.図-12(c)は D,=50%の 山砂であり,まさ土より内部摩擦角が小さい.このことか ら,内部摩擦角が変化しても影響領域の大きさは変わら ないといえる.

3.3 解析的方法による検討結果との比較

本節では模型杭貫入載荷試験の結果と Yang による解析 的方法による検討結果を比較した. Yang の結果では,影響 領域の範囲は,拘束圧,相対密度(剛性率),内部摩擦角の 影響を受ける.そこで,第1章で示した解析式(1)を用いて, 拘束圧,相対密度,内部摩擦角,剛性率およびせん断ひず みをから影響領域の範囲を考えた.拘束圧は,**表-1**から 全ケースと同程度である $P_0'=1kPa$ とし,せん断ひずみは 影響領域の条件から $\gamma = 0.0408$ とした.相対密度,内部摩 擦角,影響領域の範囲は**表-2**に示す.表より Yang の解析 では相対密度の増大と共に影響領域が大きくなり,内部 摩擦角が大きい地盤の方が大きな影響領域が形成される ことがわかる.

表-3 は、本研究で行った模型杭貫入載荷試験の結果と Yang による解析結果を比較したものである.実験では解 析結果とは異なり全ケースにおいて影響領域の変化はほ とんど見られなかった.ここで生じた違いの原因は未解 明だが本研究と Yang による影響領域の定義が異なること が原因の一つとして考えられる.

表-2	解析による影響領域の推定結果
	(拘束圧 P0 =1kPa)

相対密度 (%)	50	50	70	70
内部摩擦角 (°)	40	32	40	32
I _{FD} / D	4.74	4.62	4.76	4.74

表−3 模型杭貫入載荷試験の結果と Yangによる解析結果を比較

	相対密度が	内部摩擦角が		
	増大	増大		
解析による 影響領域	増大	増大		
実験から得た	同程度もしくは	同程度		
影響領域	やや減少			

4. 結論

影響領域の範囲を実験的に検討することを目的とし, 異なる2種類の砂(まさ土、山砂)を用いて土槽内に地盤を 作成し、模型杭に載荷荷重を与えることで模型杭を貫入 させ、地盤の変形を観察した.さらに、側面にアクリル板 を設置した土槽を用いて、同様に模型杭貫入載荷試験を 行うことで、地盤の変形過程を観察し、影響領域の範囲を 評価した.これらの実験から得られた知見を以下に記す.

- (1) 低拘束圧下の実験であるが、模型杭の貫入にともなう 地盤変形をカラーサンドの線の移動により把握する ことができ、模型実験により影響領域の大小関係を定 性的に把握できることを確認した。
- (2) 実験においては、相対密度の大小による影響領域の 変化はほとんどなかった.もしくは、相対密度の小さ い地盤の方が影響領域がやや大きくなった.また、内 部摩擦角の変化による影響領域の変化はみられなか った.
- (3) 模型実験による結果と解析による結果は全ケースに おいて差異が生じており、本研究と Yang による影響 領域の定義が異なることが原因の一つとして考えら れる.

本研究における模型実験は非遠心場での実験であり, 拘束圧が非常に小さいため,実地盤に対して行う解析へ の適用には課題が残る.今後は,遠心場において遠心模型 載荷実験を行うことで,模型杭貫入載荷試験の精度を向 上させる必要がある.また,模型杭貫入載荷試験後の地盤 を土槽ごと凍結処理して解体する方法による実験では、地 盤の正確な初期状態がわからなかったため,杭中心断面 における影響領域の範囲を定量的に評価することは困難 であった.そのため,CT スキャンによる方法など,杭中心 断面において影響領域の範囲を定量的に評価する手法を 考えなければならない.

参考文献

- 脇田英治:杭の標準沈下特性に関する研究,土木学 会論文集, No. 603, III-44, pp. 45-52, 1998.
- Hirayama, H : Load-Settlement Analysis for Bored Piles Using Hyperbolic Transfer Functions, *Soils and Foundations*,

Vol.30, No.1, pp.55-64, 1990.

- 安福規之、田中邦博、村田秀一、兵動正幸: 圧縮性の 卓越した砂中の杭の先端支持力とその評価、土木学 会論文集 No. 505, III-29, pp.191-200, 1994.
- 4) 桑嶋啓治, 兵動正幸, 上俊二: 杭の先端支持力特性 に及ぼす周辺地盤の挙動と粒子破砕の影響, 土木学 会論文集 C(地圏工学), Vol. 69, No. 2, pp. 259-271, 2013.
- 5) 大谷順,平井貴雄,弘中淳市,椋木俊文:鉛直荷重下における杭先端地盤の3次元支持力特性,土木学会論文集C, Vol. 42, No.2, pp.311-319, 2006. 大谷順,尾原祐三,菅原勝彦,椋木俊文:地盤工学における産業用X線CTスキャナの適用,土と基礎, Vol. 48, No. 2, pp.17-20, 2000.
- 6) 兵頭順一,塩崎禎郎,曽根照人,小堤治,一井康二: 二次元有効応力解析における杭の先端支持力のモデ ル化手法,土木学会論文集 A1(構造・地震工学), Vol. 71, No. 4,(地震工学論文集 34 巻), pp.408-423, 2015.
- Yang, J.: Influence Zone for End Bearing of Piles in Sand, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 132, pp.1229–1238, 2006.
- Tsuchida, T. A.M.R.G.Athapaththu, Kano, S. and Kazuaki, S : Estimation of In-Situ Shear Strength Parameters of Weathered Granitic (Masado) Slopes Using Lightweight Dynamic Cone Penetrometer, *Soils and Foundations*, JGS, Vol.51, No.3, pp.497–512, 2011.

(2017年6月19日 受付)