土石流災害時のニオイの発生と土砂流出の時系列に関する研究

Study on the Sequential Order of Odor Generation and Sediment Discharge in Debris Flow Disaster

土肥聖平	Shohei DOHI	(日本工営(株))
土田 孝	Takashi TSUCHIDA	(広島大学防災・減災研究センター)
杉山 実	Minoru SUGIYAMA	(日本工営(株))
田代広行	Hiroyuki TASHIRO	(日本工営(株))
橋本涼太	Ryota HASHIMOTO	(広島大学大学院工学研究科)

土石流の前兆現象としてのニオイについて、「大きな土石流の前に小規模の土石流が先行して渓流内に堆積しニオイを放つ」という仮説の可能性を西日本豪雨災害の東広島市と 竹原市の被災事例を用いて検討した.まず土石流シミュレーションで先行する土石流が発 生した場合に渓流内で土砂が堆積する可能性のある緩勾配部分を抽出した.次に、抽出箇 所にニオイ発生源を置いたときの下流へのニオイの拡散をニオイ濃度移流拡散シミュレ ーションによって検討した.一定の条件のもとで下流から 280~410m 上流に堆積した土 砂によるニオイが下流に到達することが起こる可能性があるとの結果が得られた.

キーワード:土砂災害,土石流,ニオイ,事例研究

(IGC : C-07, E-07)

1. はじめに

土砂災害が発生する際には転石や地鳴り,岩盤からの 湧水,川の濁り,異臭などの前兆現象があることが知ら れている.これらの前兆現象は,住民の避難の判断材料 に用いられて被災を免れた事例があり,国土交通省や自 治体でも雨量情報に加えてこれら前兆現象を警戒・避難 の行動に適切に活用するように呼びかけている¹⁾.

前兆現象の中に「腐ったニオイがする」があり、土砂 災害を体験した住民の証言からも、崩壊前に異臭を感じ たという報告がある²⁾. 土田らはニオイセンサを用いて 自然まさ土斜面の地盤内のニオイの強さを調べ、高いニ オイ強度を観測した.この結果,地盤内のニオイの強さ は地盤による相違が大きく土の強熱減量が大きいほどニ オイ強度は大きかったと報告している 3). また, 土層の 底部にニオイ発生源を置き降雨を一次元的に浸透させる 模型実験を行い、地下水面が上昇し表層部に近づいたと きに地表面のニオイ強度が急増することを確認した³⁾. これらの結果から、土田らは深い層に強いニオイが存在 する地盤において,豪雨時に地盤内のニオイを含む空気 が地下水位の発生と上昇によって地表面に押し上げられ ニオイが発生する可能性があるとした.これは土砂災害 の前にニオイが発生する原因を地下水位の上昇で説明し ようとするものである.

2018年7月の西日本豪雨災害においても被災者から土 石流発生前に異臭を感じたことが報告されている⁴⁾.こ れまでの土石流災害の調査において,土石流が1回の流 出で下流に大きな被害を及ぼすのではなく,複数回に分 かれて流出し,後続の土石流ほど住宅の近くまで到達し 被害が拡大している場合があることが報告されている 5).6). この経験から,前兆現象としてニオイの発生が報告 される原因の一つとして,「渓流内で小規模の崩壊崩落が 発生して土石流として流出し,比較的傾斜が緩やかな部 分に土砂が溜まる.この先行した土石流(後続のより大 きな土石流に対して)の堆積物のニオイが下流に伝わっ てニオイを感じる」という仮説を立てた.本仮説をここ では「先行土石流仮説」と称することにする.

先行土石流仮説は、土砂災害において発生する土石流 が複数回であることを前提としている.2014年の広島県 の土砂災害において, 八木三丁目で発生した土石流は少 なくとも3回に分けた流出があったと推定されている¹⁾. 2018 年の西日本豪雨による土砂災害でも複数回土石流 が発生した箇所が存在し、広島市安芸区矢野地区では40 分間に3回の土砂が流れ出し、車や電柱などを次々と飲 み込んでいったという証言がある⁴⁾. これは住宅地まで 到達した土石流が3回ということであり、 渓流内で留ま ったものを含めると発生回数はさらに多かった可能性も ある. 西日本豪雨災害において, 東広島市の西条河内共 同生コン株式会社では、事務所の防犯カメラが会社の裏 山の渓流から土石流が流出し工場内に流出する一部始終 を撮影していた. これによると 2018年7月7日6時か ら約20分間に大小合わせて30回以上の土石流が工場内 に波のように間欠的に流出していた.以上のことから, 土石流災害において複数回にわたって規模の異なる土石 流が発生している、という仮定には一定の妥当性がある と考えられる.

本研究では,住宅を襲う土石流が発生する前に比較的 小さな土石流が発生し,斜面中腹の傾斜が緩やかとなる 部分に堆積し、地中に閉じ込められていた土壌が地表面 に現れて発したニオイが風によって下流方向まで運ばれ ると想定し、それによって土石流の発生前に住民がニオ イを感知する可能性に関する検討を行った.検討方法は、 まず2018年7月の西日本豪雨で実際に土砂災害が発生、 かつ前兆として土独特のニオイが感じられた渓流を選択 し、その渓流に関する地形データを収集した.次に、地 形データをもとに土石流シミュレータを用いて渓流内で 小規模な土石流が発生した場合の土砂の堆積箇所の検討 を行い、想定される堆積箇所から放たれるニオイが移流 拡散によってどの程度下流まで運ばれるかをニオイ濃度 拡散シミュレーションで検討した.

2. 対象渓流の選択及び当時の気候状況と被害

シミュレーションの対象渓流として,前述の通り実際 に土砂災害が発生し,かつ災害発生前に土のニオイが感 じられたという証言があった箇所を選択した.2018年7 月の西日本豪雨で土砂災害が発生した東広島市八本松町

(以降,東広島)にある渓流と,竹原市西野町(以降, 竹原)にある渓流の2箇所である⁷⁾.なお,本論文内で 示される地図や航空写真は国土地理院が公開している標 準地図⁸⁾や2007年以降に撮影した写真から対象箇所を抜 粋したものである.

2.1 東広島市の土石流発生箇所と被災の状況

本対象箇所は山陽本線八本松駅の南西部に位置し,下 流には民家が立ち並んでいる.付近には国道2号線が通 っており,駅にも近いということで普段の交通量は少な くない.西日本豪雨による土砂災害の発生が7月6日金 曜日の19時30分頃であり,帰宅の時間と重なったため, 付近の交差点では多くの乗用車が土砂に飲み込まれた. 災害後の航空写真と土石流が発生した渓流,ニオイを感 知した位置を図-1 に示す.図-2(a)は発災後の状況であ るが(a)は対象渓流の出口付近である.当時橋梁の工事が 進められており,掘削した箇所に約3000 m³の土砂が堆 積したと推測された.ニオイについては,「現場で異臭を 感じ直ちに全員に退避の指示を出し,自分も退避した. 退避した直後に土石流が流出した」ということであった. 図-2(b)は出口から約400mで別の谷筋と合流している地 点の状況である.

図-3 は広島県の防災 Web⁹で公開されている雨量計測 地点のうち対象地点に最も近い(南南東に約 2.5km)に 位置する東広島のアメダス雨量計で計測された雨量の推 移である.7月3日から7日までの累積雨量は404 mmで あり,対象地点から4km以内の他の雨量計4箇所の累積 雨量も407~447mmであるので対象地付近の降雨は一様 であったと考えられる.アメダスの観測所では風の計測 も行っているが,土石流が発生した7月6日19:20~19:40 の風速は平均2.0m/sであった.

2.2 竹原市の土石流発生箇所と被災の状況

本対象箇所は竹原市を通る国道2号線の北部に位置し, 渓流の下端に非常に近い箇所にあった民家に土石流が流 れ込み住宅はほぼ全壊したが,住んでいた方は無事であ った.ニオイについては,「土石流が発生する20分くら い前に家の山側のガラリを空けたところ異臭を感じた」 ということであった.図-4は土石流発生後の航空写真で あるが,図中にはニオイを感知した場所(被災家屋)の 位置と広島県の西野雨量観測所の位置を示している.図 -5は土石流によって被災した家屋の状況である.西野雨 量観測所における雨量を図-6に示すが,7月3日から7 日までの累積雨量は316mmであった.被災箇所から約

図-1 東広島の渓流 国土地理院撮影(2018年撮影)

(a)ニオイ感知地点 (b)下流端から約 400m の地点 図-2 東広島の渓流状況

図-4 竹原の渓流 (国土地理院 2018 年撮影)

図−5竹原の渓流のニオイ感知 地点の状況

300mの距離での観測値であるが,周辺3箇所の(距離は 1.8~4.4km)では413~435mmの累積雨量を観測してお り,被災箇所での降雨は図-6より大きかった可能性があ る.風向を記録した最も近い観測所は対象渓流から 5.5km離れた本郷であり,豪雨が発生した19時から19 時40分の平均風速は2.7m/sであった.風向は時間によ る変化が大きく,被災箇所からの距離や地形の違いを考 慮すると直接参考にはならないと判断した.

2.3 対象地域の地形データの収集

土石流とニオイ拡散のシミュレーションを行うために 必要となる渓流の上流部から下流および付近の民家まで の地形データは、国土地理院が公開している基盤地図情 報ダウンロードサイト¹⁰⁾から入手した.

対象渓流を含む 2 次メッシュの数値標高モデルをダウ ンロードし,基盤地図情報ビューアで読み取りを行い, シミュレーションを行う範囲を選択,エクスポートによ って地形データを xyz ファイルで取得した.この xyz フ ァイルを Excel で読み込むことにより,任意の平面直角 座標系を基準としたときの東西方向の距離,南北方向の 距離,標高を 5m メッシュ間隔で入手できる.この座標 データをもとに、3 次元メッシュを作成し,ニオイ濃度 拡散シミュレーションを行う.ダウンロード可能な数値 標高モデルは、図-7 に示すように標高によって色が塗り 分けられたデータであるため、図-8 のような測量の基準 線や標高点などが記されている基本項目もダウンロード し,重ね合わせることで対象渓流の識別を容易にした.

シミュレーションでは渓流のどの位置に土砂が堆積す るか不明であるため、渓流の上流部分以外は全て計算対 象範囲とした.また、ニオイ拡散解析では渓流の下流部 分から付近の民家までのニオイ伝達過程が対象となるた め、渓流内の土石流堆積物から放出されるニオイが伝わ る可能性がある民家までの範囲を解析の対象範囲とし、 図-9の範囲の地形データを取得した.対象範囲の大きさ は、渓流1(東広島)が幅 380m×長さ 820m、渓流 2 (竹 原) は幅 390m×長さ 740m である.この範囲を3 次元メ ッシュに変換したものを図-10 と図-11 に示す.

3 土石流シミュレータによる土砂堆積箇所の検討 とニオイ濃度拡散シミュレーション

3.1 土石流シミュレーション Kanako の概要

土砂の堆積箇所検討に土石流シミュレータ Kanako を 使用した. Kanako は,京都大学および(一財)砂防・地 すべりセンターによって開発された一次元の土石流のシ ミュレータであり,任意の形状の渓流に発生する土石流 がもたらす土砂堆積や侵食についてシミュレーションを 行うことができる¹¹⁾. 必要となる入力パラメータを表-1 に示した¹²⁾. Kanako は想定される土石流の流量や粒径, 泥水密度,内部摩擦角などの特性,渓流内に設置する砂 防施設の影響などを考慮したうえで, 渓流内の各位置で の堆積量あるいは侵食量, 最終的に渓流外から氾濫する 土砂の量と流出範囲を予測するものである. なお, 今回

図-6 西野雨量計での計測時間降水量および総降水量

図-7 入手した数値標高モデル(東広島)

図-8 入手した基本項目(東広島)

図-9 各渓流の地形データ取得範囲(左:東広島,右: 竹原,国土地理院2018年撮影)

図-10 渓流1(東広島)の対象範囲の3次元メッシュ

検討する渓流では砂防堰堤は設置されていなかった.また,土石流特性については既往の解析事例^{11),17)}を参考にして仮定した値を用いた.

3.2 入力パラメータの設定

渓流の形状のパラメータとして河床の縦断形状と渓流 幅を設定する必要がある.縦断形状は,西日本豪雨によ る土砂災害発生後の航空写真で渓流の位置を確認し国土 地理院地図の断面図作成ツールを用いて,それぞれ図-12, 図-13 のように作成した.渓流幅は,同じく国土地理院 地図の面積計測ツールを用いて,航空写真から各渓流全 体の崩壊面積を求め,求めた面積と縦断図から読み取っ た渓流の長さから渓流幅を算出した.これらの計測結果 と渓流長さから,東広島の渓流幅は 11m,竹原の渓流幅 は 6m に設定した.

初期河床堆積厚は、土砂によって侵食される可能性が ある移動床を意味しており、今回は広島地域での過去の 土石流の発生事例¹³⁾⁻¹⁵⁾と西日本豪雨災害における風化 層の厚さに関する検討結果¹⁶⁾から、渓流全域で表層から 1mの層厚を移動床とした.供給ハイドログラフは、上流 からの流入土砂量と土砂の濃度を後述する方法で設定し 決定した.

本シミュレーションでは,前述した東広島市内の西条 河内共同生コン株式会社の事例を参考に 1,200 秒をシミ ュレーション時間とし,その間で設定した土砂量を渓流 に流出させた.発生する土石流は,一般に 0.001 mm~10 mm程度のマサ土と数mのコアストーンの混合物であるが, 本解析では,渓流を踏査時の写真(図-2(b))から 0.3mを 土石流の代表粒径として設定し,土砂濃度については急 勾配地点における土石流濃度として設定される値の最大 値 (0.9×C*, C*:堆積土砂濃度=0.6)を参考に 50%と設 定した.

国土地理院地図から計測した東広島の渓流(渓流 1) は長さ約580m,竹原の渓流(渓流 2)は長さ約570mで あったが,各渓流で最も上流に位置する地点(以降,上 流端)から下流方向に約100mのエリアを崩壊源頭部と して崩壊が発生し,土石流として流れたと仮定した.各 渓流における流入土砂量(m³)は,崩壊面積(m²)に河 床堆積厚(m)を乗じたものである.河床堆積厚は渓流の どの位置においても1mと設定し,崩壊面積(m²)は図 -14に示す方法で上流端から100mの範囲の崩壊面積(m²) を,国土地理院地図から崩壊と判断可能な部分を面積計 測ツールによって計測し,流入土砂量(m³)を算出した. なお,これまで Kanakoを実地形へ適用した中谷らの解 析例¹⁷⁾を参考に,総土砂流量を200秒間かけて上流端か ら供給することとした.

東広島の渓流(渓流1)は長さ約580m,竹原の渓流(渓流2)は長さ約570mであったが、上流端から100mは下流に土石流を供給する範囲としたので、土石流が流下する渓流長はそれぞれ480m,470mであった.土石流シミュレーションでは、土石流が流出する区間にその地点で

図-11 渓流2(竹原)の対象範囲の3次元メッシュ

表−1 土石流シミュレーションの入力パラメー						
入力項目	説明					
河床形状	河床の縦断形状,渓流の幅を設定					
供給ハイドログ	上流端から供給される土石流の流量・濃					
ラフ	度の設定					
初期河床堆積厚	計算開始前の堆積厚(移動床)の設定					
	代表粒径(0.3m), 砂礫密度(2.65), 泥水					

土石流特性

図-12 渓流1(東広島)の縦断図(国土地理院 2018 年撮影)

 図-14 各渓流における上流端 100m の崩壊面積の計測 (左: 渓流 1,右:渓流 2,国土地理院 2018 年撮影)

の堆積量あるいは侵食量,土石流量の推移計算する計算 点を設定するが,計算点を10m間隔とし,渓流1,2で それぞれ48点,47点を設置した.計算条件を両渓流ご とにまとめ,それぞれ図-15,図-16に示した.

図-15 と図-16 には土砂の供給条件である入力ハイド ログラフを示すが、上流端から 100mの土砂供給範囲の 土砂量を 200 秒間に図に示す 3 角形の形状の流量-時間関 係として供給した.

東広島,竹原の各渓流における各計測点の移動土砂量 およびその地点の勾配を表-2に示す.表内における移動 土砂量とは,初期河床と計算終了時の河床の差からどの 程度土砂が堆積もしくは侵食されたかを表しており,正 の値は堆積を意味する.

東広島の渓流の結果では、下流端から 390~410m(上 流から 170~190m)の地点で土砂が堆積している.図-2(b)にこの地点の状況を示すが別の谷筋との合流点とな っており、表-2に示すように下流端 390m と 400m では 勾配が前後よりも緩くなっている.下流端から 270~300m の範囲も前後に比べ堆積量が大きく、270~290mの範囲 で勾配が緩い.以上より、下流端から 390mの地点を地 点 A、290mの地点を地点 B とし、この 2 箇所に先行し た土石流が堆積しニオイ発生源となると仮定した.

竹原の渓流では、下流端からの距離 410m (上流端から は 160m)に相当する箇所が別の沢筋との合流点付近で勾 配変化点であり、一時的に土砂が堆積する可能性が高い と考えた.シミュレーションの結果では、東広島の渓流 よりも渓流幅が狭く深い谷筋であったため侵食するとの 計算結果となった.また、下流端から 280m (上流端から 290m)の地点がもっとも緩勾配でありシミュレーション でも土砂は堆積であった.以上の結果より、下流端から 410m を地点 C, 280m の地点を地点 D とし、2 箇所に先 行した土石流が堆積しニオイ発生源となると仮定した.

3.3 ニオイ濃度拡散シミュレーションの解析条件

使用した解析ソフトは、(株) ソフトウェアクレイドル SCRYU/Tetra V11 for Windows である.計算は有限体積法 を用いており、各渓流の実際の地形情報をもとに 20m メ ッシュを作成し、ニオイの発生源を長さ 10m、幅 1m の 範囲として、渓流1(東広島)の地点 A と地点 B、渓流 2(竹原)の地点 C と地点 D とした条件でそれぞれニオ イ拡散シミュレーションを行った.

渓流1および2ではいずれも夜間19時から21時の間 に土石流が発生したので、風環境は一般的な夜間の風を 想定し、山から平地にかけて吹き下ろす山谷風とした. 風速は東広島の観測所で当時間に計測された風速を参考 に2m/sとした.なお、図-3と図-6より両渓流とも土石 流が発生した時間帯は強い雨が降っていたと考えられる. 大気中に放出された物質はエアロゾルや気体として大気 中を浮遊し、直接地表や建物、湖沼・河川などに沈着す るほか、降水の洗浄作用によって大気中から除去される ^{18),19)}.したがって、ニオイを発する物質の濃度も降雨の 洗浄作用によって低下した可能性があるが、本解析では 降雨が大きな影響を与えないと仮定し考慮していない.

既往の研究で実際の地盤のニオイ強度を計測した際に, 計測開始から一度ニオイ強度のピークを示した後断続的 にニオイが放出され続けていたことから, 渓流内に堆積 する土は常にニオイを放出し続けるものと仮定した.

堆積土砂から放たれるニオイについては、地盤内のニ

表-2 両渓流内における移動土砂量および 10m 間隔の平均 勾配(左:渓流 1,東広島,右:渓流 2,竹原)

								-							
各計算点での移動土砂量(東広島)						各計算点での移動土砂量(竹原)									
下流 端か ら(m)	上流 端か ら(m)	移動土 砂量 (m ³)	勾配 (deg)	下流 端か ら(m)	上流 端か ら(m)	移動土 砂量 (m ³)	勾配 (deg)	下流 端か ら(m)	上流 端か ら(m)	移動土 砂量(m 3)	勾配 (deg)	下流 端から (m)	上流 端か ら(m)	移動土 砂量 (m ³)	勾配 (deg)
480	100	-41.2	16.9	240	340	-4.9	10.7	470	100	-16.5	20.0	230	340	-15.2	15.2
470	110	-38.8	19.8	230	350	-10.3	14.3	460	110	-14.8	25.7	220	350	11.7	19.9
460	120	-39.6	18.5	220	360	-2.6	16.2	450	120	-16.6	41.2	210	360	-11.8	12.2
450	130	-39.1	19.5	210	370	-1.3	13.1	440	130	14.9	40.4	200	370	27.0	19.8
440	140	-39.1	21.3	200	380	-0.8	11.7	430	140	-14.2	9.0	190	380	-4.8	10.7
430	150	-38.3	20.8	190	390	-0.4	10.8	420	150	-10.1	33.2	180	390	61.1	19.4
420	160	-27.7	20.2	180	400	-0.9	10.0	410	160	-17.1	16.8	170	400	-10.4	5.2
410	170	142.7	22.5	170	410	-0.7	11.1	400	170	-17.4	18.5	160	410	-14.0	17.2
400	180	109.6	6.8	160	420	7.7	11.1	390	180	-7.8	18.6	150	420	-11.2	18.7
390	190	-2.8	3.8	150	430	-1.2	7.4	380	190	-16.9	16.1	140	430	4.3	18.3
380	200	-36.8	12.5	140	440	-1.2	11.9	370	200	-17.5	22.7	130	440	-12.5	12.2
370	210	-38.4	23.1	130	450	-0.7	11.8	360	210	-17.1	22.4	120	450	6.9	20.3
360	220	-10.2	22.9	120	460	-0.3	11.0	350	220	-18.0	27.9	110	460	48.3	15.7
350	230	6.2	16.0	110	470	6.8	10.1	340	230	-17.4	21.5	100	470	5.7	5.8
340	240	-4.7	11.4	100	480	4.0	7.5	330	240	-2.6	22.4	90	480	-2.8	11.1
330	250	12.0	14.7	90	490	33.5	9.4	320	250	-16.1	14.4	80	490	25.7	16.6
320	260	28.6	12.1	80	500	-0.3	3.9	310	260	-17.7	28.2	70	500	1.2	6.8
310	270	10.8	10.0	70	510	16.1	9.4	300	270	-6.6	20.6	60	510	0.4	11.0
300	280	59.4	12.7	60	520	9.9	5.4	290	280	3.2	16.9	50	520	0.3	11.1
290	290	68.3	8.9	50	530	-0.1	5.4	280	290	4.9	14.1	40	530	11.6	11.9
280	300	52.8	6.4	40	540	6.1	7.4	270	300	23.6	15.4	30	540	-0.2	7.7
270	310	48.5	6.8	30	550	-0.3	5.4	260	310	-15.3	10.4	20	550	6.4	11.9
260	320	-4.0	4.4	20	560	-0.2	8.5	250	320	-15.7	22.2	10	560	3.9	8.2
250	330	-1.1	14.1	10	570	-0.2	7.5	240	330	-3.5	27.3				

オイ成分の濃度を実際に計測した例が少ないので,解析 では濃度を特定の値に設定せず,長さ10m幅1mの堆積 土砂が持つニオイの濃度を1とした時に,どのように濃 度が希釈されながら下流方向に流れるかを解析した.

流体解析の予測式として,ナビエストークスの基礎方 程式のレイノルズ平均を取ったものを使用し,乱流モデ ルは一般的な *k*-ε モデルを使用した.解析に使用した連 続の式,平均流の輸送方程式,*k*の輸送方程式,εの輸送 方程式およびニオイ成分の輸送方程式を以下の式(1)~ 式(5)にそれぞれ示す.

$$\frac{\partial \overline{u_i}}{\partial x_i} = 0 \tag{1}$$

$$\frac{\partial \overline{u_i}}{\partial t} + \frac{\partial \overline{u_i u_j}}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \frac{\partial}{\partial x_j} \left\{ \nu_t \left(\frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right) \right\}$$
(2)

$$\frac{\partial k}{\partial t} + \frac{\partial \overline{u_j}k}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\frac{v_t}{\sigma_k} \frac{\partial k}{\partial x_j} \right) + G_s - \varepsilon$$
(3)
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} G_s = v_t \left(\frac{\partial u_i}{\sigma_k} + \frac{\partial u_j}{\sigma_k} \right) - \frac{\partial u_i}{\sigma_k}$$

$$\frac{\partial \varepsilon}{\partial t} + \frac{\partial \overline{u_j}\varepsilon}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\frac{v_t}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial x_i} \right) + \frac{\varepsilon}{k} \left(C_1 G_s - C_2 \varepsilon \right)$$
(4)

$$\frac{\partial c}{\partial t} + \frac{\partial \overline{u}_j c}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\frac{v_t}{S_{ct}} \frac{\partial c}{\partial x_j} \right)$$
(5)

式中の変数は以下の通りとする. *t*:時間, ν_t:渦動粘性係数, *u*:風速, *k*:乱流エネルギー, *p*:圧力, ε:乱流消失率 *c*:ニオイ成分の濃度, ρ:空気密度

ナビエストークスの方程式のレイノルズ平均を取ると レイノルズ応力の項が出てくるが、これは式(2)の右辺第 2 項にあたる.本来右辺には物質の種類に依存する粘性 係数 v を用いた粘性項が存在するが、速度に依存するレ イノルズ応力よりもかなり小さい値となるため式(2)で は省略されている. 乱流エネルギーk, 乱流消失率 ε の輸 送方程式においても同様である.式中のパラメータ C1, C_2 , σ_k , σ_ϵ は実験によって定める係数であるが、本解析 では, Launder-Spalding が各種流れ場の実験に基づき実験 値と整合するように最適化した値として定めたパラメー タ ($\sigma_k=1.0$, $\sigma_{\varepsilon}=1.3$, $C_1=1.44$, $C_2=1.92$) を用いた. これは 一般的に「標準 k-c モデル」といわれる乱流モデルであ る²⁰⁾. また, 乱流シュミット数 Sct (渦動粘性係数と渦拡 散係数の比)は対象とする拡散現象に応じて実験データ から定める必要があるが、本解析においては、対象とす るニオイ拡散の実験データはないため一般的に用いられ ることが多い Sct=0.9 とした²¹⁾.

図-17 渓流1(東広島)のニオイ濃度移流拡散シミュレー ションにおけるニオイ発生源の位置

図-18 渓流 2 (竹原) のニオイ濃度移流拡散シミュレーションにおけるニオイ発生源の位置

解析で使用した渓流1と渓流2の渓流およびその周辺 地域を20mのメッシュで三次元的に構成し,ニオイ設置 箇所の位置を示した図が図-17と図-18である.Z軸は鉛 直上向きを正,X軸およびY軸はそれぞれ東向き,北向 きを正としている.

図-19 渓流1(東広島)ニオイ発生地点Bのときのニオイ濃度移流拡散シミュレーション結果(縦断面図)

4. ニオイ濃度移流拡散シミュレーションの結果

解析結果は、時間経過とともに広がるニオイ濃度を色 によって表示した.ニオイの濃度のオーダーはニオイ発 生源におけるニオイの濃度を1とし、下流における濃度 の拡散を計算した.

土砂災害時に発生するニオイについては、「生臭いニオ イ」、「腐ったようなニオイ」、などの証言があるが、地盤 内の微生物が還元状態で有機分を分解していると考える とニオイに硫化水素が含まれている可能性が考えられる. 硫化水素は「腐卵臭」と表現される強い刺激臭を有し、 悪臭防止法に基づく特定悪臭物質のひとつである.日本 産業衛生学会による許容濃度は 5ppm であり、50ppm で は目の痛みを感じるとされている.一方,ニオイに関しては,臭覚限界の濃度が0.008~0.025ppm 程度で0.06ppm 程度のときには明瞭に感じるとされている.堆積した汚 泥内で発生した硫化水素は外部から攪拌などの衝撃を受 けると一気に拡散される性質があり,静置状態で硫化水 素 10mg/lを含む汚泥は攪拌などの衝撃により,気相中の 硫化水素ガス濃度が一気に200~1000ppm 程度になると されている²²⁾.

先行する土石流により堆積した土壌で発生する硫化水 素濃度を 200ppm と仮定すると嗅覚限界の濃度 0.025ppm は発生源濃度の約 10⁻⁴となる.そこでニオイ発生源にお けるニオイの濃度を1とし、10⁻⁴以上を最大、10⁻⁵以下を 最小として、その間の濃度を 10 等分して色を塗り分けて

図-20 渓流1 (東広島) ニオイ発生地点 B のときのニオイ濃度移流拡散シミュレーション結果(平面図)

(b) 200 秒経過後

図-21 渓流2(竹原)ニオイ発生地点Dのときのニオイ濃度移流拡散シミュレーション結果(縦断面図)

図-22 渓流2(竹原)ニオイ発生地点Dのときのニオイ濃度移流拡散シミュレーション結果(平面図)

濃度の拡散状況を示した.ニオイ濃度の分布図は,渓流 を縦断方向に切断した縦断面図と渓流の表面に沿って切 断した平面図の2つを作成し,渓流の高さと下流方向の 拡散(X-Z 方向)および渓流に直行する方向を含む平面 的な拡散の仕方(X-Y 方向)について検討を行った.

図-19 は渓流1 (東広島) でニオイ発生点を B 点とし たときの解析結果である. 図ではニオイが放出されてか ら 30 秒後,150 秒後,330 秒後,450 秒後のシミュレー ション結果を示している. 赤色で示されるエリアがニオ イ濃度 10⁴ 以上であり,青色に近づくにつれてニオイ濃 度が希薄になる.図-19 より,鉛直方向へのニオイ濃度 の広がりは 100m 程度に留まっているの対し,渓流の下 流方向には平均約 1.5m/s の速さで拡散し続け,約4分で 渓流下端にニオイが到達した.

図-20 は同じ結果を平面図に表したものである.図の ように、下流方向への広がりと比較して渓流の流れに直 行方向の広がりは少なく、濃度が10⁻⁵以上となる範囲は 100m 程度の幅に留まっている.設定した渓流には横方向 の風はなく,横への広がりは濃度拡散によるものである と考えられるが、下流方向へのニオイは,山谷風とした風 速 2m/s という比較的穏やかな風でも下流まで広がって いることが図-20 などから確認できる. そのため,渓流の 下流方向へのニオイの広がりは風による移流の影響が支 配的であると考えられる.

同様に図-21と図-22には、渓流2(竹原)でニオイ発 生地点がDのときの結果を示した.東広島の渓流と同様 に、鉛直上向き方向および横方向のニオイ濃度は一定ま で拡散すると留まる傾向にあるが、渓流下流方向には風 の影響により渓流下端および周辺の民家まで濃度10⁻⁴以 上のニオイが届いている.濃度10⁻⁴以上のニオイが下流 に伝搬する速度は、東広島の渓流が平均で約1.5m/s,竹 原は平均で約1.0m/sであった.

図-19から図-22に示した結果では、ニオイ濃度のオー ダーを最大 10⁻⁴としていたが、各解析結果におけるニオ イ濃度のオーダーを最大 10⁻³にしたものを図-23に、最 大 10⁻²にしたものを図-24に示しており、それぞれシミ ュレーション開始から 600 秒後の結果のみを示した.ま た、ニオイ濃度拡散シミュレーションの結果から、ニオ イ放出開始から 600 秒時点でのニオイ濃度と伝達距離の 関係を図-25 に示した.図のように、今回の解析条件下 では、ニオイ濃度が発生源の 10⁻⁴となる範囲は風によっ て数分で下流に伝わったが、10⁻³のニオイ濃度の範囲は

図-23 ニオイ発生源における濃度と臭覚限界の関係が 10⁻³としたときの渓流1(東広島)ニオイ発生地点 B のときのニオイ濃度移流拡散シミュレーションの結果(縦断面図と平面図)

図-24 ニオイ発生源における濃度と臭覚限界の関係が 10⁻²のときの渓流1(東広島)ニオイ発生地点Bのとき のニオイ濃度移流拡散シミュレーションの結果(縦断面図と平面図)

10 分経過してもニオイ発生箇所から 120~130m 程度まで しか達しないことが分かった.また,発生源の 10⁻² のニ オイ濃度となるのは発生源周辺の限定的な範囲であり, 竹原のケースでのみ 20~30m まで伝わった.すなわち, 図-19 から図-22 でニオイ濃度と距離の関係に注目した が,この条件ではニオイが 200m~300m 離れた下流まで 拡がって感知されるには,ニオイ発生源における濃度に 対して臭覚限界の濃度が 10⁻⁴ 倍程度であることが必要と いえる.

以上の検討から、今回解析を行った2つの渓流において、ニオイの発生源が硫化水素で臭覚限界がニオイ発生 源の濃度の約10⁴程度であると仮定すると、先行した土 石流による渓流途中での堆積を発生源としたニオイが 200m~300m 離れた地点で感知されることはありうると いえる.

今回実施した土石流シミュレーションおよびその結果 を用いたニオイ濃度移流拡散シミュレーションは,いく つか条件を仮定して行っており、設定した条件に関する 現地調査等による裏付けは十分とはいえない.また,ニ オイの発生源と臭覚限界についても硫化水素を仮定した が,発生したニオイの成分に関しては調査を行っておら ず、風の条件(2m/s)の設定や降雨の影響を考慮しなか った点についても裏付けは不十分である.したがって、 ここでの検討結果はこれら仮定した条件のもとで先行す る土石流によるニオイの発生を説明できる可能性を示す ものであるが、昨年の災害におけるニオイ発生の原因を 特定したとはいえない. 今後は, 上記の不十分であった 点について,現地調査等で検証を行う必要がある.また, 2. で述べたように、渓流1ではニオイに気づいてから短 い時間で大規模な土石流が流下しており、渓流2では20 分くらい後であったということであった. 土石流が複数 回発生する場合にどのような間隔で発生するかは現在の ところ十分な情報が得られておらず、前兆現象としての ニオイの意味を検討する上で、発生の間隔に関する情報 を収集することが重要と考えられる.

図-25 ニオイ発生源を1としたときの臭覚限界濃度とニ オイ到達距離の関係

5. 結論

本研究では、土砂災害の前兆現象として発生するニオ イについて、「渓流内で小規模の崩壊崩落が発生し、比較 的傾斜が緩やかな部分に土砂が溜まりニオイを放つ」と いう仮説(先行土石流仮説)について被災事例を用いて 可能性の検討を行った.

西日本豪雨災害で土石流が発生し、その前にニオイを 感じたという証言が得られている東広島、竹原の渓流に ついて3次元地形データを用いてモデル化し、土石流シ ミュレーションで先行する土石流が発生した場合に渓流 内で土砂が堆積する可能性のある緩勾配部分を抽出した. 次に、抽出箇所にニオイ発生源を置いたときの下流への ニオイの拡散をニオイ濃度拡散シミュレーションによっ て下流方向に風速 2m/s が作用する条件のもとで渓流内 に堆積した土砂から放たれるニオイが下流まで伝達され る過程を検討した.その結果をまとめると以下のように なる.

- (1) 土石流シミュレーションの結果,2つの渓流において 先行した土石流が堆積する可能性のある箇所として
 2箇所を抽出した.
- (2) ニオイの原因物質の可能性がある物質として硫化水素の特性を考慮し、ニオイの発生源の濃度に対して嗅覚限界の濃度がその 10⁻⁴ と仮定すると、東広島の

渓流(発生源は下流から 290m および 390m 上流), 竹原の渓流(発生源は下流から 280m, 410m)のいず れも十分にニオイは 4~5 分で下流に到達した.下流 に伝搬する速度は,東広島の渓流が平均で約 1.5m/s, 竹原は平均で約 1.0m/s であった.

- (3) ニオイ発生源の濃度が臭覚限界の 10-3 の場合,今回の条件では到達距離は 100~180m であり,ニオイを感じたという証言のある下流の位置まで到達しない.
- (4) 以上より2つの渓流において、ニオイの発生源が硫 化水素で臭覚限界がニオイ発生源の濃度の約10⁻⁴程 度であると仮定すると、先行した土石流による渓流 途中での堆積を発生源としたニオイが200m~300m 離れた地点で感知されることはありうるといえる。

なお、今回実施した解析はいくつかの条件を仮定して 行っており、これらの条件に関する現地調査等の裏付け は十分とはいえない.したがって、本研究は先行する土 石流によるニオイの発生の可能性を示したといえるが、 その原因を特定したものではない点に注意を要する.

謝辞

本研究の実施において 2018 年西日本豪雨災害の被災 者から貴重な証言をいただいた.困難な時期に本研究に 協力いただいたことに,心より感謝します.

参考文献

- 国土交通省土砂災害警戒避難に関わる前兆現象情報検討会:土砂災害警戒避難に関わる前兆現象情報の活用のあり方について、http://www.mlit.go.jp/common/001021008.pdf,(参照 2019.6.17).
- 海堀正博,柳迫長三:平成26年8月20日広島豪雨 災害体験談集,公益社団法人砂防学会,広島市防災 士ネットワーク,2015.
- 土田孝,由利厚樹,加納誠二,中藪恭介,矢葺健太郎,花岡尚,川端昇一:地盤内のにおい強度と斜面崩壊時のにおい発生に関する一考察,地盤工学ジャーナル, Vol.8, No.2, pp.339-348, 2013.
- 海堀正博,柳迫長三:平成30年7月豪雨災害(広島県)体験談集,公益社団法人砂防学会,広島市防災士 ネットワーク,2019.
- 5) 土田孝,森脇武夫,熊本直樹,一井康二,加納誠二, 中井真司:2014 年広島豪雨災害において土石流が 発生した渓流の状況と被害に関する調査,地盤工学 ジャーナル, Vol.11, No.1, pp.33-52, 2015.
- 6) Takashi Tsuchida, Takeo Moriwaki, Shinji Nakai, AMRG, Athapaththu: Investigation and consideration on landslide zoning of multiple slope failures and debris flows of 2014 disaster in Hiroshima, Japan, Soils and Foundations, Vol.59, pp.1085-1102, 2019.
- 土田孝,森脇武夫,後藤順治,今井卓也,川本暁, 橋本涼太,平成30年7月西日本豪雨災害における

地域ごとの地盤災害の特徴(中国・広島その2),地 盤工学会誌, Vol.67, No.7, pp.14-17, 2019.

- 国土地理院,地理院地図(電子国土 Web), https://maps.gsi.go.jp/,(参照 2019.1.10).
- 広島県:広島県防災 Web 雨量実況一覧, http://www. bousai.pref.hiroshima.jp/?p=observation%2Frainfall, (参照 2019.1.10).
- 10) 国土地理院:基盤地図情報ダウンロードサービス, https://fgd.gsi.go.jp/download/menu.php, (参照 2019. 1.17).
- 中谷加奈, 里深好文, 水山高久: GUI を実装した土 石流一次元シミュレータ開発, 砂防学会誌, Vol.61, No.2, pp.41-16, 2008.
- (一財)砂防・地すべり技術センター: Kanako, Ver.1.40利用マニュアル, http://www.stc.or.jp/10soft /file/Kanako1D_manual.pdf, (参照 2019.1.10).
- 加納誠二, 土田孝, 中川翔太, 海堀正博, 中井真司, 来山 尚義 : 2009 年に東広島市志和町内地区で発 生した土砂災害の調査について, 地盤工学ジャーナ ル, Vol.6, No.2, pp.243-259, 2011.
- 14) 花岡尚,川口 将季,土田 孝,中川 翔太,加納 誠 二:2010年7月に広島県庄原市で発生した土砂災害 の調査と考察-平行斜面中腹の崩壊メカニズムに関 する検討-,地盤工学ジャーナル, Vol. 7, No.1, pp.295-309, 2012.
- 15) 川端昇一,土田孝,加納誠二,由利厚樹,花岡尚, 中川翔太:地盤調査と斜面安定解析に基づく土砂災 害危険渓流の豪雨時危険度評価,地盤工学ジャーナ ル, Vol. 8, No. 1, pp.119-131, 2013.
- 16) 三浦弘之:空間情報データによる広島県土石流災害の評価,第7回防災学術連携シンポジウム「平成30年夏に複合的に連続発生した自然災害と学会調査報告」、セッション2,2019.
- 中谷加奈, Sumaryono, 里深好文, 水山高久: 汎用土 石流シミュレータ Kanako の実地形への適用, 水工 学論文集, 53 巻, pp.703-708, 2009.
- 笠原三紀夫:大気汚染物質の乾性,湿性沈着,環境 技術, Vol.12, No.12, pp.813-820, 1983.
- 中村圭三,三谷雅肆:大気の沈着成分に対する降水 洗浄係数の評価,天気, No.64, Vol.1, pp.5-17, 2017.
- 村上周三: CFDによる建築・都市の環境設計工学, 東京大学出版会, pp.40, 2000.
- Yoshihide Tominaga, Ted Stathopoulos : Turbulent Schmidt numbers for CFD analysis with various types of flowfield, Atmospheric Environment, Vol.41, No.37, pp.8091-8099, 2007.
- 太陽コンクリート工業株式会社,硫化水素パンフレット, https://www.taiyo-c.co.jp/pdf/chemical/009.pdf, (参照2019.6.14).