2018年7月豪雨により崩壊した傾斜30度未満の崩壊斜面の機構解明

Cause and Mechanism of Slope Failure with a Gradient of Less Than 30 Degrees Due to Heavy Rain of July 2018

井上	真	Makoto INOUE	((株)ウエスコ)
西垣	誠	Makoto NISHIGAKI	(岡山大学名誉教授)
鈴木茂	丧之	Shigeyuki SUZUKI	(岡山大学自然科学研究科)
木村隆	备行	Takayuki KIMURA	((株)エイト日本技術開発)
笹井友	て司	Yuji SASAI	(中電技術コンサルタント(株))

2018年7月豪雨で斜面崩壊が発生した岡山大学北側の半田山は,傾斜24~29度の古生 層の斜面であった.土砂災害ハザードマップに示される傾斜30度以上の急傾斜地崩壊危 険箇所でない斜面で崩壊が発生したことから,地形,地質,降雨状況に着目し崩壊機構の 解明を試みた.航空レーザー測量による遷緩線や地形変化点と,表土および風化土層の層 厚,さらに鉱物分布,降雨条件から有限要素法(せん断強度低減法)による浸透応力連成 解析を実施した結果,現地の崩壊状況と概ね整合した結果が得られた.これらより古生層 の斜面は,中国地方に多く分布するマサ土の斜面と異なる崩壊挙動をすることを論述した.

キーワード:斜面崩壊,遷緩線,粘土鉱物,浸透応力連成(IGC:B-10, C-01, E-06)

1. はじめに

近年,各地で短時間の雨量や24時間雨量,48時間雨 量が観測史上最大となることがしばしばあり,これに伴 う斜面崩壊の発生件数の増加および発生規模の大規模化 が懸念される.

斜面崩壊は,表層崩壊,深層崩壊,地すべり性崩壊に 大別され,斜面崩壊全体の約95%が傾斜度30度以上の 斜面で発生していると言われている¹⁾.また,このうち の80%以上が表土や崩積土の表層崩壊に分類されている¹⁾.

土砂災害防止法に基づく急傾斜地崩壊危険箇所の定義 は,傾斜 30 度以上とされ,傾斜 30 度未満の本研究地の 斜面末端付近は,土砂災害ハザードマップに崩壊危険箇 所として表示されていなかった.しかし,近年,豪雨に よって,安全と考えられていた斜面での崩壊現象が生じ ている.

このように頻発する土砂災害に対して,崩壊危険箇所 と崩壊土砂量の推定精度の向上は喫緊の課題である.こ ういった状況を鑑み,本論では傾斜 30 度未満の自然斜面 で崩壊が発生した岡山大学北側の半田山を対象に,航空 レーザー測量(以下,LPと称す)データにより判読した 微地形と,表土および風化土層(以下,風化土層と称す) の層厚,地盤の鉱物特性,物性値の把握,降雨浸透を考 慮した浸透-応力連成解析により,崩壊機構の解明を総 合的に実施した結果について論述する.

図-1 岡山地方気象台の雨量記録(2018年7月)²⁾

2. 半田山の自然斜面崩壊の概要

2.1 崩壊発生時の降雨状況

図-1 に示す崩壊地近傍の岡山地方気象台観測記録に よると、時間最大雨量は、崩壊が発生したとされる7月 6日22時直前の22mm/hrであったものの、それまでの 72時間雨量は249mmと、1976年9月の325mmに次ぐ 観測史上2位の長期降雨イベントであった²⁾. また、豪 雨前2ヶ月間の先行降雨量を加味すると、2018年は約 530mmであり、1976年の約490mmに比べて多いことが 特徴として挙げられる.

なお,前記で72時間雨量に着目した理由は,崩壊発生 までの降雨継続時間が70時間であったこと,気象庁²⁾で 公開されている観測史上最大の雨量記録が,1時間,3時 間,6時間,12時間,24時間,48時間および72時間の ものであることによる.

図-2 半田山位置図(国土地理院³⁾に加筆, O崩壊箇所)

写真-1 東側崩壊斜面の状況

写真-2 西側崩壊斜面の状況

2.2 自然斜面崩壊の状況

斜面崩壊は、図-2に示す半田山南側斜面の2箇所(東 側と西側)で発生した.東側崩壊箇所の規模は,幅20m, 長さ75m,深さ2.5~3m程度であり、写真-1に示すよう に斜面末端部に土砂が堆積したものの、家屋被害はなか った.なお、斜面末端にはパイピング跡が確認された. 一方,西側崩壊箇所の規模は,幅45m,長さ170m,深さ 2m程度であり、写真-2に示すように土砂が斜面末端部 まで到達して家屋へ土砂が流入したものの,住民は救出 されて無事であった.

2.3 崩壊前後の半田山 LP 図

半田山の尾根を含む広範囲の LP データから作成した 傾斜量図により微地形の判読を行った.なお,当地は落 葉樹が多く,葉が茂る前の撮影であったため,地形デー タへの植生影響は少なかった.崩壊後の傾斜量図に基づ き地形判読した結果を,崩壊前に撮影した傾斜量図に示 す(図-3,図-4).崩壊前後の傾斜量図より,崩壊箇所に は,北東一南西方向に遷緩線が横断し,遷緩線の谷側は, 部分的に遷急線となる地形変化点(以下,地形変化点と 称す)が確認できた.現地調査の結果,遷緩線付近は旧 管理道と思われる小道となっており崖錐が堆積している ことがわかった.

今後,広域エリアから崩壊危険箇所を抽出するにあた り,LPデータから滑落崖や遷緩線,地形変化点等の自動 抽出法の安価化が課題である.

図-3 崩壊前の東側斜面(撮影 2014 年 3 月 22 日)

図-4 崩壊後の東側斜面(撮影 2019 年 4 月 5 日)

2.4 半田山の地形地質概要

半田山は、東北東一西南西方向に伸長する標高 140~ 160m程度の丘陵地である.図-5の既往地質図によると, 調査地の地質は、白亜紀後期の粗粒花崗岩類(cGr, coarsegrained granites)の上盤に古生代の泥岩(psl, pelitic rock), その上位に砂岩 (pss, psammitic rock) が分布する. また, 東部には円礫からなる古第三紀の山砂利層 (cg, gravels and coarse sand) が分布する. 崩壊地の岩石は深海で堆積 したと推測される泥岩で、粘土にシルトの平行な葉理を 伴っている (写真-3, 写真-4 左側). 花崗岩が貫入した際 に受けた熱によって変成しホルンフェルス化しているた め,風化していない岩盤は堅硬である.また,顕微鏡下で 観察すると熱変成によって黒雲母が多く形成されており (写真-4 右側),後述する X 線回析の結果,黒雲母は熱 水変質および風化によってバーミキュライトに変質して いることが判明した.このバーミキュライトは水を含む と膨張するため、変状や流動化しやすい傾向がある 5).

図-5 半田山周辺の既往地質図⁴⁾

写真-3 崩壊地から採取された泥岩の研磨試料(横 9cm)

写真-4 薄片顕微鏡写真(左側横 3mm,右側横 0.3mm)

3. 半田山の崩壊機構の推定

崩壊機構を解明するために、風化土層の層厚と地盤の 物性値,鉱物学的特性の把握を試みた.本研究では、斜 面の地表部に分布する風化土層厚を推定するために、各 種サウンディング手法と表面波探査を試行し、既往ボー リング結果と照合した.なお、風化土層には表層部に分 布する表土、崖錐堆積物、風化土を含む.

3.1 風化土層の厚さの推定

東側崩壊箇所の縦断方向で災害復旧工事のために実施 された既往調査ボーリング結果によると,風化土層厚は, 図-6に示すように滑落崖直上部は2.1m (Bor.1),中腹部 は2.7m (Bor.2) である.Bor.1地点の風化土層は礫混り 砂質土で,図-7に示すようにN値5 (GL-0.65~-0.95m) と31 (GL-1.15~-1.45m,礫打ち修正N値18)であり, 本層で崩壊が発生した.Bor.2地点の風化土層は礫質土か らなる旧崩積土でN値50以上を主体とする.

3.1.1 表面波探查結果

表面波探査は、地表付近に沿って伝播する表面波の一 つのレイリー波を用いて、その伝播速度から地盤の速度 構造を解析により求める手法である.レイリー波の伝播 速度は一般に S 波速度 Vs の 0.9~0.95 倍とされ、Vs 構 造を求めることができる.今回、地表部に分布する風化 土層の分布を推定する目的で、Bor.1 地点を中心に、ハン マー打撃により起震し測線長 100m で実施した.測線位 置は図-8 に示すとおりであり、Bor.1 地点の速度分布を 図-9 に示す.

Bor.1 地点では硬軟の異なる表土と風化岩の地層境界 がGL-2.1mにあり,速度分布もS波速度200~225m/sと 225~250m/sの境界と概ね一致する.しかし,緩い表土が 分布する地表の速度は、比較的速い275~300m/sであり 整合しない.この理由として、本探査測線上には、地表

図-6 東側崩壊斜面推定地層断面図

図-7 Bor.1 柱状図

図-8 東側斜面崩壊頭部 調查地平面図

に崩壊跡の凹凸があることと,不均質に転石を混入する 崖錐堆積物が分布し,探査前提条件の水平地層構造でな いことが考えられる.

今後,斜面で表面波探査を適用する上で,探査精度の 向上が課題である.

図-9 Bor.1 地点 表面波探查結果図

3.1.2 サウンディング試験結果

風化土層の分布を推定するために,図-8の表面波探査 測線上を中心に,EK-1~EK-8の全8地点で簡易動的コ ーン貫入試験を実施した.また,3地点で振動式貫入試 験のと,1地点で電動式貫入試験を試行した.振動式貫入 試験は,草刈り機のエンジンを利用した機器であり,5000 回/分の振動打撃を与えて,コーンを貫入させる方法であ る.電動式貫入試験は,電動削岩機を利用した試作の貫 入試験機を使用した.各サウンディング試験結果を表-1 に示す.簡易動的コーン貫入試験,振動式貫入試験,電 動式貫入試験の深度とBor.1地点の風化土層厚(GL-2.1m) を照合すると,崖錐堆積物の礫の影響により,サウンデ ィング試験深度は浅く計測された.

8 箇所の簡易動的コーン貫入試験地点のうち,最も風 化土層が厚かった地点は EK-7 地点であり,層厚 2.44m で あった. EK-7 地点は,小道沿いに位置しており地形的に 遷緩線となる. 遷緩線付近は,重力による落下の影響が 減り,比較的崖錐堆積物が厚く堆積しやすい場所である. 図-3 に示すように崩壊範囲内にも遷緩線が認められる ため,崩壊前は崖錐堆積物が比較的厚く堆積していたと 考えられる.

今後,風化土層の3次元分布を把握するにあたり,斜 面を効率よく移動でき,礫打ちの影響を低減できる打撃 エネルギーの大きなサウンディング機器の開発が課題で ある.また,崖錐堆積物や風化土層等の不安定な土塊の 移動に伴う地形変化を衛星SARデータで解析し,広域エ リアから崩壊危険箇所の効率的な抽出が課題である⁷⁾.

3.2 土質試料サンプリング

崩壊箇所近傍の表層に分布する風化土の物理特性,力 学特性,透水性を把握するために,東側崩壊箇所におい て乱れの少ない試料を採取した.採取方法は,写真-5 に 示すように板に長さ 15cm 程度の釘を打ち込んで試料を 切り出す釘打ち込み法^{8),9)}とした.採取地点は,風化土 層が比較的厚い図-8 の EK-7 地点とした.

また,西側崩壊箇所では,乱れた試料により物理試験 を実施した.

表-1 東側斜面 簡易貫入試驗結果

:K:簡易動的コーン貫入試験 Bor:ボーリング 振動式:振動式貫入試験 電動式:電動式貫入試験										
位置(測線)	Om		25m			50m			75m	
試験番号	EK-1	EK-2	振動式	電動式	EK-3	振動式	東Bor.1	EK-4	振動式	EK-5
試験深度	0. 84m	2. 07m	1.04	0.8	1.27m	0.63	表土 2.10m	1.12m	0. 65	0. 82m
Nd值(先端)	100	71	-	-	63	-	換算233	83	-	100
換算N値	31	23	(225)	-	20	(139)	N値71	26	(100)	31
位置(測線) 滑落崖上部斜面 崩壊左側部				崩壞右側音	3					
試験番号	EK-6	EK-7	-	-	EK-8	-	-			
試験深度	2. 05m	2.44m	-	-	1.54m	-	-			
Nd值(先端)	71	125	-	-	71	-	-			
換質N値	23	39	_	_	23	-	_			

写真-5 釘打ち込み法によるサンプリング状況

表-2 土質試験結果一覧表

	試料番号		東側	西側
	土粒子の密度	$\rho_s \mathrm{g/cm^3}$	2.651	2.634
6	自然含水比	w., %	10.8	13.2
-112	湿潤密度	ρ_t g/cm ³	1.767	_
	飽和度	Sr %	41.3	_
	礫分	%	14	50
	砂分	%	16	10
粒度	シルト分	%	36	27
	粘土分	%	34	13
	最大粒径	mm	26.50	19.00
	液性限界 WL	%	34.4	38.5
3292729-	塑性限界 Wp	%	11.5	11.7
特性	塑性指数 Ip		22.9	26.8
	地盤材料の分類	頁 名	砂礫質粘土	砂混り粘土質礫
	試験条件		CU-(三軸)	_
	~ * +	c kN/m²	16	—
せん断	全心刀	φ°	16.0	—
	****	c'k N/m^2	0	—
	有幼心刀	φ '°	36.0	—
	透水係数 k	m/s	1.08E-7	_

3.3 室内土質試験結果

東側および西側崩壊箇所の室内土質試験結果を表-2 に示す.東側と西側の粒度特性は,礫の混入が西側の方 が多いが,その他の物性値に大きな差異はないため,東 側と西側の土の物理特性は概ね等しいと評価し,東側試 料を代表として力学試験と透水試験を実施した.

3.4 鉱物学的斜面特性

3.4.1 X線回折および色彩測定結果

西側崩壊箇所の縦断方向で実施され,滑落崖直上部に 位置する既往調査ボーリング(Bor.1)のコアを使用し, 地盤を構成する鉱物の同定のため,不定方位および定方 位のX線回折を実施した.不定方位ではリーベルト法に より鉱物重量%を求め,定方位法では水簸処理・エチレ ングリコール処理・塩酸処理により鉱物の同定を行った. 図-10,図-11に,バーミキュライト含有量の多いD級

岩盤の深度 3.4~3.5m 試料の X 線回折図を示す.図-12 にはボーリングコアの分析結果を示すが,含有3鉱物(K: カオリン鉱物,V:バーミキュライト,M:スメクタイト) の分布により,表-3に示すように岩盤は4層(強風化帯, 風化帯,弱風化帯,変質帯),崖錐1層の全5層に区分さ れ,Zonel~Vと定義した.

また,分光測色計を使用し,ボーリングコアの色彩を 20cm ピッチで測定した a*b*の色彩座標値(a*:-60緑 →+60赤, b*:-60青→+60黄)の変化分布図を,図-13に 示した.

ZoneI~Vの色彩変化については、地表ほど酸化色(赤・ 黄)が大きくなり、図-14に示す a*-b*の相関図では、正 の相関があることが判る.ここで、b*の色彩と鉱物重量% の相関を図-15 に示す.風化岩のバーミキュライトや崖 錐のカオリン鉱物は、b*と重量%に正の関係が認められ る.一方、崖錐のバーミキュライトは負の関係が認めら れる.これは、崖錐内でバーミキュライトがカオリン鉱 物に変化しているためで、崖錐内でのカオリン化作用が 顕著であることを示す.また、スメクタイトも負の相関 であるのは、深部の還元色であるほど含有量が大きいこ とを示し、スメクタイト化作用が深部からの温水変質作 用によるためと考えられる.つまり、変質は下から、風 化は上から作用し、その双方が混在していることを示す.

3.4.2 鉱物区分による斜面形成過程

風化作用は、通常は風化の最終鉱物であるカオリン化

図-12 風化·変質鉱物同定結果分布図

表−3 X線回折による地層区分

				N值		
Zone区分	岩級区分	地層区分	K カオリン従物	V バーミキュ ライト	M Z N D D A A L	(0)
Zone V	土砂	崖錐層))))))))))))))))))))))))))))))))))))))		A/77/11:	18~19
Zone IV	D~CL	強風化帯				33~41
Zone III	D~CH	風化帯				100~250
Zone II	CL~CH	弱風化帯				300~370
Zone I	СМ~СН	変質帯				750~

作用が多い. 泥質岩でのバーミキュライト化の例は極め て少ない. 高圧を受けた泥質片岩でフェンジャイトと呼 ばれる白雲母からバーミキュライトが生成されたとされ る例¹⁰⁾はあるが,他は通常,緑泥石からの風化である. 山陰型花崗閃緑岩の例¹¹⁾や,御荷鉾帯のバーミキュライ ト地すべりの例¹²⁾では,いずれも緑泥石からの風化生成 物で,その緑泥石の起源が黒雲母や角閃石であった.ま た,バーミキュライト帯に地すべり地が形成されている

例¹³⁾があり,バーミキュライトはスメクタイトと同様に 膨潤性を持つことから,斜面安定上は注意すべき鉱物に なる.

ここで,鉱物生成変化を把握するために ZoneI~VのX 線回折結果を踏まえた鉱物区分図を図-16 に示す.

調査ボーリング結果では、付加体である泥質岩が母岩 で、花崗岩の近接貫入を受けてホルンフェルス化した泥 質ホルンフェルスである.花崗岩の熱変成で生成された 黒雲母やセリサイト(白雲母類)が認められる.この黒 雲母が、その後高温の熱水で緑泥石に変質する.その時 点ではかなり高圧下の深部にあり、300℃以上の熱水変質 作用が反応を進行させる.その後、隆起に伴い地下環境 が変化し、100~200℃の熱水により濁沸石や輝沸石が形 成され、更に隆起して 100℃未満の温水によりスメクタ イトが形成される.これらの変質作用は下位ほど大きい. つまり変質は下から作用している.

その後の地殻変動で地表まで隆起し,地表より風化作 用を受けることになる.通常の鉱物学的風化作用はカオ リン化作用だが,現地は熱変成で黒雲母が生成されてい たことから,緑泥石に変質し,その緑泥石がバーミキュ ライトに風化した.崖錐直下の強風化岩の ZoneIV でバ ーミキュライトが最も多く,斜面崩壊による崖錐層形成 の素因になったと推定される.崖錐層では,バーミキュ

ライトが最終風化鉱物となるカオリン鉱物に変化し,バ ーミキュライトの含有量は低下する.また,斜長石もカ オリン鉱物に変化しほとんど確認されない.

現地の地史の視点からみた鉱物学的構造は,図-17 に 示すようにホルンフェルス化で生成された黒雲母が緑泥 石に変質し,さらに風化過程で吸水膨潤性に富むバーミ キュライト化したことで,吸水性が高く強度の低い風化 土が形成され,斜面の開析が進行したものと考えられる.

崖錐層内はカオリン化が進行しバーミキュライトの含 有量は低下しているものの,残留して膨潤しやすい状況 にあった.現地の崩壊は,この崖錐層と風化土層の境界 付近で発生している.

ここで, 表-4 に示すように X 線回析による鉱物量比か ら, 配向性粘土鉱物の総和 PLSM (バーミキュライト+ス メクタイト+輝沸石+濁沸石+緑泥石+セリサイト+黒雲母) を求めた.また,図-18 に示すように,色彩値 a*と配向 性粘土鉱物の総和 PLSM の相関式を求めた.

図-19に中村の配向性粘土鉱物と残留強度 φ_rの関係¹⁴⁾ を示すが、図の式により残留強度を試算した.また、図 -20に示すように、色彩値 a*と N 値の相関式を求め、他 に色彩値 b*との相関式による N 値を求めて両者を平均 し、図-21 に示す 20cm ピッチの N 値の分布図を作成し た.図-21 では、その N 値から正規化 N₁を求め、土研の

2018年7月豪雨により崩壊した傾斜30度未満の崩壊斜面の機構解明

	関係式 区分	崖錐 ZoneV		風化岩 ZonelV∼Ⅲ		変質帯 Zonel	
	深度(GL-m)	1.2m	1.8m	3.4m	4.4m	7.4m	9.2m
K	カオリン鉱物	45.6	32.4	12.1	0.0	0.0	0.0
٧	バーミキュライト	4.9	5.6	25.0	9.4	0.0	0.0
М	スメクタイト	0.0	0.0	0.0	0.0	1.4	8.1
Heu	輝沸石	0.0	0.0	10.0	0.0	0.0	0.0
Lau	濁沸石	0.0	0.0	0.0	0.0	0.0	9.4
Chl	緑泥石	0.0	0.0	0.0	0.0	0.0	36.5
Se	セリサイト	6.6	23.8	0.0	0.0	0.0	13.7
Bt	具雲母	0.0	0.0	4.4	13.4	27.3	0.0
Hb	角閃石	0.0	0.0	0.0	1.9	0.0	0.0
PI	斜長石	0.0	0.0	25.9	54.3	54.9	36.5
Qtz	Qtz 石英		38.2	22.6	21.0	16.4	16.3
配向性粘土鉱物総和 V+M+Heu+Lau+Chl+ Se+Bt		11.5	29.4	39.4	22.8	28.7	67.7
色彩值 a*		3.88	2.60	2.49	0.87	-0.75	-0.45
色彩值 b*		19.63	11.94	11.24	7.94	3.71	0.88

式¹⁵⁾ (ϕ =4.8lnN₁+21) で求めた内部摩擦角 ϕ も示している.なお、 ϕ r と ϕ は排水条件になる.図-19 に示すように配向性粘土鉱物が32%以上になると、残留強度が極端に低下する現象が報告されており、崖錐層下端で配向性粘土鉱物が39.2%と推定されたことから強度低下が著しいと考えられた.配向性粘土鉱物は強風化岩中もかなり多いが、正規化 N₁の分布をみると、崖錐下端が最も低く、土研の式の ϕ も境界部が低い.強風化岩中はまだ残積して乱れていないと考えられることから、残留強度 ϕ rの評価はできないと考えられるため、崖錐層の下端が残留強度 ϕ r も低く正規化 N₁も低いので、この境界部が最もすべり面になり易いと考えられる.参考値としてこの境界部は ϕ r=21.9°、 ϕ =37.0°であり、この間に現地強度はあるものと想定される.この ϕ =37.0°は、前述の三軸圧縮

強度φr, N値・正規化 N1と土研式φの分布図

試験による内部摩擦角 ϕ' =36.0°と近似している.地層 境界面付近のせん断強度は低くなることが知られており ¹⁰,低下率は剛体側の粗度にかかわらず一定になる傾向 がある^{17)~19}. その平均強度低下率とされる 0.86²⁰ を乗 じると、 ϕ =36°×0.86≒31°程度が、境界部付近の軟化状 況での強度と推定される. 今後、せん断の進行にともな い、さらに強度低下が生じることも想定される. このよ うに古生代の泥岩斜面の崩壊機構には、含有鉱物分布と、 表-2に示した低い透水性(k=10⁻⁷m/s オーダー)が関係し ている.

この事象は、中国地方に分布する花崗岩の風化土であるマサ土の崩壊が、崩壊面に生じるパイプフローの痕跡から、地盤内の節理やその他不連続面に水が入り込み、被圧された地下水が表層土を押し出すことにより発生すると考えられている崩壊機構²¹⁾と異なる事象である.

3.52次元浸透流解析

2 次元浸透流解析は、図-6 の東側崩壊斜面を対象に、 図-22 に示す解析モデルにより行った.なお、解析モデ ルでは、図-6 の風化土層(砂質土)を表土、その他を基 盤と定義している.解析手法は、二次元 FEM 飽和・不飽 和非定常浸透流解析²²⁾とし、地表面を降雨浸透境界、側 方下流側は地表面を水頭固定とした静水圧分布を与え、 側方上流側とモデル底面は不透水境界とした.初期水位

表−5 解析	r用飽和	透水係数
---------------	------	------

表土	$1.0 \times 10^{-7} \text{m/s}$
基盤	1.0×10^{-9} m/s

は、図-6に示す2箇所のボーリング孔内観測水位を基に、 地表面に表土が分布する斜面上方は表土下面、その他斜 面下方は地表面に水頭固定した定常解析により設定した. また、降雨条件としては、図-1に示す崩壊地近傍の岡山 地方気象台の2018年7月4日0時~7月7日18時まで の観測雨量を考慮しており、蒸発散は考慮していない. 飽和透水係数は、表-5に示すとおり、表土については表 -2に示す室内透水試験(変水位)の結果より設定し、基 盤は表土より2オーダー下げた透水係数を仮定した.不 飽和特性は、表-5の飽和透水係数より、表土・基盤とも に難透水性の地盤に適用される、既往の試験結果に基づ き設定された図-23²³⁾を用いる.

定常解析による初期の飽和度分布を図-24に、7月4日 0時からの非定常解析による降雨開始30時間,60時間, 90時間後の飽和度分布を図-25に示す.また,降雨開始 90時間後の総雨量336mmに相当する短期的な集中豪雨 として,時間85mmが4時間継続した場合の飽和度分布 を図-26に示す.なお,飽和度1.00が地下水位面である.

図-25 の飽和域は,表土の最下端から斜面上部に向け て徐々に拡がり,降雨開始 60 時間後(7月6日12時) には地形変化点よりも下部は飽和に至っている.また, 当該斜面は,表土の飽和透水係数が1.0×10⁻⁷m/s と小さ

図-24 定常解析による初期の飽和度分布

図-25 非定常解析による飽和度分布

-46 -

図-26 時間 85mm×4 時間の集中豪雨を仮定した 場合の非定常解析による飽和度分布

く地中への降雨浸透速度が遅いため、地表面から下方に 向けた飽和度の上昇が認められるものの、斜面中腹では 2018年7月豪雨が完了した降雨開始90時間後(7月7日 18時)においても、地表面からの浸透水が表土内の地下 水位面に至っていない.さらに、図-25の降雨開始90時 間後と図-26を比較すると、図-26の飽和域は表土最下端 付近のみに留まっている.このことは、透水性の低い斜 面では、短期的な集中豪雨に比べて、今回のような長期 降雨の方が地下水位上昇しやすいことを示唆している.

3.6 斜面の安定性評価

本章では、前節の浸透流解析結果と応力解析を連成さ せた弾塑性 FEM 解析によるせん断強度低減法 ^{24),25)}を用 いて、斜面のすべり安全率を算定する. せん断強度低減 法では、下式のとおり、粘着力 C'と内部摩擦角 ϕ 'による 強度 tan ϕ 'を低減係数 F で割った C'_F と tan ϕ '_Fを用いる.

$$\mathbf{C'}_{\mathrm{F}} = \frac{\mathbf{C'}}{\mathrm{F}}, \ \tan \phi'_{\mathrm{F}} = \frac{\tan \phi'}{\mathrm{F}}$$
(1)

また,弾完全塑性構成式を用い,モール・クーロン式 で土の破壊基準fと塑性ポテンシャルgを定義している.

f =
$$\frac{\sigma'_1 - \sigma'_3}{2} - C' \cdot \cos \phi' - \frac{\sigma'_1 + \sigma'_3}{2} \sin \phi'$$
 (2)

$$g = \frac{\sigma'_1 - \sigma'_3}{2} - \frac{\sigma'_1 + \sigma'_3}{2} \sin \phi$$
 (3)

ここで、 $\sigma'_1 \ge \sigma'_3$ は最大、最小有効主応力、 ϕ はダ イレイタンシー角で既往の知見²⁰より $\phi = \phi'$ とする.

浸透流解析各時間ステップのせん断強度低減法の計算 フローは、図-27 に示すとおりで、式(1)の低減したせん 断強度を用い、斜面の自重や浸透水圧を外力とした弾塑 性計算が、所定の最大繰り返し回数内で収束する最大の 低減係数Fを斜面の全体安全率と定義している.なお、 浸透流解析結果の応力解析への反映として、自重による ベクトルfbに不飽和域の飽和度の変化は考慮していない. また、水圧によるベクトルfbには、不飽和域のサクショ ンによる有効応力の増加も考慮している.この手法では、 すべり線の定義は不要であり、計算で自動的に決定され る.Fが小さな値の場合には、C'Fとφ'Fが大きくなるた め弾性応力状態となり、Fを段階的に大きくすると斜面 に破壊が生じはじめてモール・クーロン式を満たすよう

図-27 せん断強度低減法による応力解析フロー

表-6 応力解析および安定解析条件

解析月	目物性値	表土	基盤
単位	湿潤	17.3kN/m ³	24.0kN/m ³
体積重量	飽和	19.6kN/m ³	25.0kN/m ³
改由性性	内部摩擦角	31°	45°
强度特性	粘着力	0kN/m ²	100kN/m ²
亦形性州	弾性係数	50,000kN/m ²	1,000,000kN/m ²
<i>烫</i> 心村住	ポアソン比	0.3	0.2

になる.

浸透一応力連成による斜面安定性評価の解析条件を表 -6に示す.まず,表土の物性値は,単位体積重量につい ては表-2に示す当該崩壊斜面の試験結果に基づき設定 した.また,強度特性については,表-2の三軸圧縮 CUbar 試験による有効応力によるせん断強度に,3.4.2項に示し た地層境界面付近の強度低下を考慮して推定した内部摩 擦角 φ=31°を仮定した.なお,表土のN値は,3.1節に 記載のとおり5,18と小さいことから,表土全域の内部 摩擦角が一様に前記 φ=31°であるものと仮定した.また, 弾性係数は,強度特性と整合するよう2,800×N²⁷⁾による 50,000kN/m²を仮定し,ポアソン比は一般値²⁸⁾とした.次 に,基岩の単位体積重量と変形特性は硬岩相当の物性値 ²⁹⁾を,強度特性は表土に対して十分に大きな物性値を仮 定した.

せん断強度低減法による安全率の算定結果を図-28 に, せん断強度低減法においてせん断ひずみの大きさにより 表現される臨界すべり線を図-29 に示す.なお,図-29 に は、参考として極限平衡法による最小すべり安全率とそのすべり線を併記している.ここで、極限平衡法は、地盤を剛体と仮定しモーメントのつり合いのみを考慮する 簡便法であり、本検討では式(4)の円弧すべりを対象とした修正フェレニウス法を用いた³⁰⁾.

$$F_{s} = \frac{\Sigma \{ \mathbf{c'} \cdot \mathbf{l} + (\mathbf{W} \cdot \mathbf{U} \cdot \mathbf{b}) \cdot \cos \alpha \cdot \tan \phi' \}}{\Sigma \mathbf{W} \cdot \sin \alpha}$$
(4)

ここに、F: すべり安全率、c': 粘着力、
φ': 内部摩擦角、1: すべり線長
W: 土塊重量、U: 間隙水圧、b: 分割幅、
α: 円弧中心とすべり線を結ぶ線の鉛直角

図-28より、せん断強度低減法による降雨開始時点(7 月4日0時)の安全率は1.1を上回っており、地形変化 点下部の表土内が飽和に至る降雨開始60時間後(7月6 日 12 時) に, 1.05 程度まで大きく低下する. その後, 安 全率は崩壊発生時刻とされる降雨開始70時間後の7月6 日 22 時の約 1.04,降雨完了時点 7 月 7 日 18 時の 1.03 程 度まで徐々に低下している.次に,図-29より,せん断強 度低減法による臨界すべり線は,地形変化点下方の表土 内に認められ、参考に検討を実施した極限平衡法による すべり線と整合することを確認した.また,極限平衡法 による安全率は、地下水位上昇に伴う間隙水圧の作用に よって 0.55 まで低下し、せん断強度低減法の安全率と大 きく異なる結果となった.この結果について,まず極限 平衡法の安全率は,通常有限要素法に比べて小さいとさ れている³¹⁾ことと整合している.次に両者の安全率の違 いについて、せん断強度低減法では地盤の透水性の違い が考慮されるが、極限平衡法では考慮されない.本斜面 は透水性が低く,図-27 に示す水圧によるベクトル fuが 高透水性地盤に比べて小さいため, せん断強度低減法の 安全率は大きく低下しなかったものと推察される.

以上のとおり,透水係数の試験個数,強度特性の推定 精度や一様物性を仮定したこと、2次元解析であったこ となどから,せん断強度低減法による浸透一応力連成解 析結果は,安全率 1.0を下回ることの完全再現には至っ ていないが,地形変化点下部が全域飽和することで安全 率が大きく低下し,崩壊もしくは崩壊に至る直前の状態 になったことが確認できた.また,30°未満の斜面でも 地形変化点の把握が重要であること,地形変化点下方が 1次崩壊し,その後,地形変化点上方の2次崩壊,3次崩 壊を誘発した可能性を示唆できたと考える.

4. まとめ

本研究により得られた結論を以下に列挙する.

(1) 崩壊前後のLPデータに基づく傾斜量図から,崩壊箇 所を横断する遷緩線と,遷緩線谷側の部分的な遷急線 (地形変化点)の微地形を判読した.

(2) 傾斜 30 度未満の斜面の崩壊要因の一つに,遷緩線や

- 地形変化点がある. (3) ボーリングコアの X 線分析の結果,古生代の泥質岩
- がホルンフェルス化し,生成された黒雲母が熱水で緑 泥石に変質し,さらに風化過程で吸水膨潤性に富むバ ーミキュライト化したことで強度の低い風化土が形 成された.
- (4) バーミキュライトは、膨潤性がある配向性粘土鉱物 であり、各深度の配向性粘土鉱物の重量を色彩値から 推定すると、崖錐層下端部が配向性粘土鉱物が 39.2% と比較的多く、強度低下によりすべり面になりやすい ことがわかった.
- (5) 古生代の泥岩斜面の崩壊機構には、含有鉱物分布と、 低い透水性(k=10⁻⁷m/s オーダー)が関係し、この事 象は、中国地方に分布する花崗岩のマサ土の崩壊が、 地盤内の節理やその他不連続面に入り込んだ被圧さ れた地下水が表層土を押し出すことにより発生する と考えられている崩壊機構とは異なる事象であるこ とを示した.
- (6) 難透水性地盤では短期間の集中豪雨よりも長期的な 降雨特性の方が地下水位上昇量が大きく,崩壊に至り 易いことを確認できた.
- (7) 浸透一応力連成解析による斜面の安定性評価結果は、 解析用物性値の精度や2次元解析であったことから、 安全率1.0を下回ることの完全再現には至らなかった.
- (8) 浸透一応力連成解析のせん断ひずみの大きさによって表現される臨界すべり線は、地形変化点下方の風化 土層内に認められ、これが一次崩壊となって地形変化 点上方の崩壊を誘発した可能性が示唆される.

5. 今後の課題

本研究により,既存の技術である LP データから斜面 の表面の形状が理解できることがわかった.しかし,斜 面内の風化層厚分布の推定や斜面内の構成材料の鉱物学 的解析が,斜面安定を議論するには一層重要であること がわかった.このような観点より今後の課題として以下 の事項が考えられる.

- (1) 広域エリアから崩壊危険箇所の抽出において衛星 SAR データを用いた変状予兆箇所の抽出.
- (2) 崩壊危険箇所の抽出において,斜面の不安定要因と なる遷緩線や地形変化点をLPデータによる自動抽出 法の安価化.
- (3) 表面波探査, 3 次元弾性波探査等の物理探査の実施と 精度向上.
- (4) 礫の影響を低減できる打撃エネルギーが大きく,か つ斜面上の運搬も可能なサウンディング機械の開発.
- (5) 膨張性鉱物を含む地盤の物性値の推定精度向上.
- (6) 当該斜面は谷地形であるため、3次元浸透解析による より精度の高い地下水位上昇速度を考慮した解析手 法の簡易化.

謝辞

岡山大学西村伸一教授,学生諸氏,岡山地域セミナー 斜面・岩盤ワーキングの方々には,表面波探査,サウン ディング試験に協力いただき,協同組合岡山県土質試験 センターには土質試験に協力いただいた.ここに記して 謝意を表する.

参考文献

- 建設省河川局砂防部傾斜地保全課・建設省土木研究 所砂防部急傾斜地崩壊研究室:がけ崩れ対策の実態, 土木研究所資料,第3651号, pp.81-84, 1999.
- 気象庁 web:http://www.data.jma.go.jp/obd/stats/ etrn/ index.php(入手日 2020.3.15).
- 国土地理院:地図・空中写真閲覧サービス, https://mapps.gsi.go.jp, 2020年3月閲覧.
- 西部技術コンサルタント(株) 地質図作成プロジェクトチーム: 岡山県内地質図5万分の1・岡山北部, 2008.
- 5) 白水晴雄:粘土鉱物学-粘土化学の基礎一,朝倉書店, pp.152-154, 2010.
- (株)東設土木コンサルタント:技術情報, http://www.tousetu.co.jp, 2020年6月閲覧.
- 7) 佐藤弘行,石川亮太郎,金銅将史:ダム貯水池周辺 斜面の変動監視における衛星 SAR の活用,土木技術 資料, Vol.62-9, pp.8-11, 2020.
- 8) 西田一彦,青山千彰,西垣好彦:乱さないまさ土の サンプリングについて,土木学会第44回年次学術講 演会,pp.22-23,1989.

- 9) 村田秀一,安福規之,山本修三,浅上祥一:不攪乱 まさ土供試体の作成方法とその力学特性,土質工学 会,昭和 60 年度サンプリングシンポジウム発表論文 集,pp.81-88, 1985.
- 10) 河野忠臣,北川隆司:泥質片岩風化殻中のバーミキ ュライトとその起源,粘土科学,第37巻,第4号, pp.144-152,1998.
- 赤 明徳:赤名花崗岩閃緑岩深層風化殼,島根大学教育 学部紀要(自然科学)第21巻, pp.147-162, 1987.
- 丹生谷太,玉井克明,酒井俊典,木村隆行,磯野陽子,正岡久典:御荷鉾帯地すべり地の鉱物学的特徴, 日本応用地質学会平成17年研究発表会講演論文集, pp.5-8,2005.
- 13) 丹生谷太,玉井克明,酒井俊典,徳丸孝明,磯野陽子,木村隆行:御荷鉾帯地すべりのスベリ面評価,日本応用地質学会平成 17 年研究発表会講演論文集, pp.293-296, 2005.
- 14) 中村真也:地すべり土の残留強度を決定づける物理 的鉱物学的要因に関する研究,科学研究費助成金事 業研究成果報告書, p.5,2012.
- 15)独立行政法人土木研究所,構造物研究グループ基礎 チーム:土木研究所資料第3849号,三軸圧縮試験に よる砂の内部摩擦角と標準貫入試験N値との関係, pp.47-48,2002.
- 16) 山本哲朗,鈴木素之,寺山崇,原田博:斜面崩壊の 素因となる不連続面のせん断強度の評価手法,地盤工 学会,土と基礎,July, pp.7-9, 2001.
- 17) 木村隆行,徳方完:土と岩盤の境界における崩壊強度(その2),第44回地盤工学会研究発表会,講演論文集 pp.1677-1678,2007.
- 18) 木村隆行,徳方完:土と岩盤の境界における崩壊強 度の基礎的研究,第43回地盤工学会研究発表会,講 演論文集 pp.2009-2010,2008.
- 19) 木村隆行,徳方完:土と岩盤の境界面強度の基礎的 研究,土木学会第64回年次学術講演会概要集,III-081,2009.
- 20) 木村隆行,佐藤丈晴:境界面強度における強度低下 率,平成 22 年度地盤工学会中国支部セミナー報告 会,ポスターNo22, 2010.
- 21) 土木学会:平成 26 年 8 月広島豪雨災害調査報告書, http://committees.jsce.or.jp/report/node/81(参照 2020.5).
- 赤井浩一,大西有三,西垣誠:有限要素法による飽 和-不飽和浸透流の解析,土木学会論文報告集,第 264 号, pp.87-96, 1977.
- 23) 一般財団法人国土技術研究センター:河川堤防の構 造検討の手引き(改訂版), pp.42-68, 2012.

- 24) Griffiths, D.V. and Lane, P.A. : Slope stability analysis by finite elements, *Geotechnique*, Vol.49, No.3, pp.387-403, 1999.
- 25) 蔡飛,鵜飼恵三:飽和・不飽和浸透流による降雨時 斜面崩壊の予測可能性に関する考察,地盤工学会中 国支部豪雨時の斜面崩壊のメカニズムと予測に関す る論文集, pp.23-26, 2001.
- 26) 鵜飼恵三,萩原敏行,井田寿朗:モデル化された切 土斜面の3次元安定解析と留意点,地すべり,Vol.29, No.4, pp.18-24, 1993.
- 27) 公益社団法人日本道路協会:道路橋示方書・同解説, IV下部構造編, pp.187-188, 2017.

- 28) 社団法人地盤工学会:設計用地盤定数の決め方-土 質編-, pp.104-105, 2007.
- 29) 社団法人地盤工学会:設計用地盤定数の決め方-岩 盤編-, pp.47-48, 2007.
- 30) 社団法人日本道路協会,道路土工 切土工・斜面安定 工指針(平成 21 年度版), pp.398-399, 2009.
- 31) 蔡飛, 鵜飼恵三, 黄文峰: 斜面安定性の評価-極限平 衡法と弾塑性 FEM の比較, 地すべり, Vol.39, No.4, pp.395-402, 2003.

(2020年6月20日 受付)